
Two Applications of Multilinear Maps: Group Key
Exchange and Witness Encryption

Seiko Arita
Institute of Information Security

Kanagawa, Japan
arita@iisec.ac.jp

Sari Handa
Institute of Information Security

Kanagawa, Japan
mgs125502@iisec.ac.jp

ABSTRACT
Constructing multilinear maps has been long-standing open
problem, before recently the first construction based on ideal
lattices has been proposed by Garg et al. After this break-
through, various new cryptographic systems have been pro-
posed. They introduce the concept of level into the encod-
ings, and the system has a function that extracts a deter-
ministic value at only a specific level, and the encodings are
unable to downgrade to the lower levels. These properties
are useful for cryptography. We study how this graded en-
coding system be applied to cryptosystems, and we propose
two protocols, group key exchange and witness encryption.
In our group key exchange, we achieve the communication
size and the computation costs per party are both O(1) with
respect to the number of parties by piling the encodings of
passed parties in one encoding. A witness encryption is a
new type cryptosystem using NP-complete problem. The
first construction is based on EXACT-COVER problem. We
construct it based on another NP-complete Hamilton Cycle
problem, and prove its security under the Generic Cyclic
Colored Matrix Model.

Categories and Subject Descriptors
E.3 [Data] [Data Encryption]: [public key cryptosystems]

General Terms
Theory,Security

Keywords
multilinear maps, group key exchange, witness encryption,
hamilton cycle problem

1. INTRODUCTION
Multilinear maps have been desired to be constructed be-

cause if it exists it would enable many interesting crypto-
graphic applications. Boneh and Silverberg attempted to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
AsiaPKC’14, June 3, 2014, Kyoto, Japan.
Copyright 2014 ACM 978-1-4503-2801-2/14/06 ...$15.00.
http://dx.doi.org/10.1145/2600694.2600699.

construct multilinear maps from abelian varieties, but they
concluded such maps should be hard to construct[BS03]. Re-
cently, the first construction of multilinear maps has been
described by Garg, Gentry and Halevi based on ideal lat-
tices [GGH13]. After this breakthrough, various new cryp-
tographic systems have been proposed today. The system
realizing multilinear maps is called ”graded encoding sys-
tem”. The encodings have homomorphic addition and mul-
tiplication and they introduce the concept of level into the
encodings. This concept of level making the encoding sys-
tem interesting, here we describe two of its interesting prop-
erties. First, an encoding is probabilistic, that is, encodings
of a same plaintext are different because of included ran-
domness, but at only a specified level, a deterministic value
can be extracted from the random encodings of the same
plaintext. Second property is that a rerandomized encoding
is not allowed to be divided by some other encodings, so an
encoding is unable to downgrade to the lower levels. Appli-
cations use these properties. For example, in the group key
exchange on N parties [GGH13] [CLT13], each party creates
a level-(N − 1) encoding from its own encoding and others,
and they extract a same value as a sheared group key at the
level-(N − 1). In witness encryption [GGSW], an encryp-
tor and a decryptor generate a same level encoding for each
by different way and extracts a same value from their own
created encodings. The second property brings one-wayness
and means a strong tool for cryptosystems. In the work of
attribute based encryption for circuit [GGHSW13], authors
use this one-wayness to prevent a back tracking attack and
achieved to treat circuits with multi fun-out gates.

Our result. We have studied applications of multilinear
maps. In this work we propose two such applications: Group
Key Exchange and Witness Encryption. A one-round group
key exchange protocol is described in the work [GGH13]
[CLT13], in which each party collects encodings of all other
parties and multiplies its own encoding and them one-by-
one. We design a GKE protocol in which one encoding is
communicated on each upflow and downflow, in which par-
ties’s secret are piled up gradually. The number of encodings
communicated in a session of the GKE protocol per party
does not depend on the number of parties. Also its compu-
tation cost per party is independent of the number of parties
because each party only multiplies a received encoding by
its own encoding.

Witness encryption is a new type of cryptosystem that
can be achieved using multilinear maps [GGSW]. The wit-
ness encryption of [GGSW] uses EXACT-COLVER Problem
as NP-complete language. We try to construct based on an-

13

other NP-complete problem, Hamilton Cycle Problem. The
two problems have in common with a task of collecting just
N element with no duplication, and this situation matches
the property of the graded encoding system that extracts a
deterministic value only from the specified level-N encod-
ings. The difference is that in the case of Hamilton Cycle
Problem, elements are connected by edges and a cycle fol-
lows the adjacent edges sequentially. We take in a tool of
adjacent matrices for managing edge adjacency and man-
ages non-commutativity of vertices in a cycle by matrix’s
non-commutativity. We proved the security of our scheme
based on our generic cyclic colored matrix model that is a
variant of a generic colored matrix model defined by work
of indistinguishability obfuscation [GGH13+].

2. PRELIMINARIES

2.1 Approximate Multilinear Maps
Gentry et al. defined their notion of a approximate multi-

linear maps, which they call graded encoding schemes [GGH13].
They view group element in multilinear map schemes as just
a convenient mechanism of encoding the exponent: Typical
application of bilinear maps use α · gi as an encoding of the
plaintext integer α ∈ Zp. In their setting, they retain the
concept of a somewhat homomorphic encoding, and have an
algebraic ring (or field) R playing the role of the exponent
space Zp.

2.1.1 Definition of Graded Encoding Schemes

Definition 1. (κ-Graded Encoding System [GGH13]). A
κ-Graded Encoding System consists of a ring R and a sys-

tem of sets S = {S(α)
i ⊂ {0, 1}∗ : i ∈ [0, κ], α ∈ R}, with the

following properties:

1. For every fixed index i ∈ [0, κ], the sets {S(α)
i : α ∈ R}

are disjoint. The set S
(α)
i consists of the ”level-i encodings

of α”.
2. There is an associative binary operation ”+” and a self-
inverse unary operation ”-” (on {0, 1}∗) such that for every

α1, α2 ∈ R, every index i ≤ κ, and every u1 ∈ S
(α1)
i and

u2 ∈ S
(α2)
i , it holds that u1+u2 ∈ S

(α1+α2)
i and −u1 ∈ S−α1

i

where α1 + α2 and −α1 are addition and negation in R.
3. There is an associative binary operation ”×” (on {0, 1}∗)
such that for every α1, α2 ∈ R, every i1, i2 with i1 + i2 ≤ κ,

and every u1 ∈ S
(α1)
i1

and u2 ∈ S
(α2)
i2

, it holds that u1×u2 ∈
S

(α1α2)
i1+i2

. Here α1 · α2 is multiplication in R, and i1 + i2 is
integer addition.

The n-graded encoding system of [GGH13] for a ring R

includes a system of sets S = {S(α)
i ⊂ {0, 1}∗ : i ∈ [0, n], α ∈

R} such that, for every fixed i ∈ [0, n], the sets {S(α)
i :

α ∈ R} are disjoint. The set S
(α)
i consists of the ”level-i

encodings of α”.
Instance Generation. The randomized InstGen(1λ, 1n)

takes as inputs the security parameter λ and integer n. The
procedure outputs (params, pzt), where params is a descrip-
tion of an n-graded encoding system, and pzt is a level-n
”zero-test parameter”.
Ring Sampler. The randomized samp(params) outputs

a ”level-zero encoding” a ∈ S0, such that the induced distri-

bution on α such that a ∈ S
(α)
0 is statistically uniform.

Encoding. The enc(params, i, a) takes i ∈ [n] and a level-

zero encoding a ∈ S
(α)
0 for some α ∈ R, and outputs a level-i

encoding u ∈ S
(α)
i for the same α.

Re-Randomization. The reRand(params, i, u)
re-randomizes encodings to the same level i, as long as the
initial encoding u is under a given noise bound.

Addition and negation. Given params and two en-

codings at the same level, u1 ∈ S
(α1)
i and u2 ∈ S

(α2)
i , it

holds add(params, u1, u2) ∈ S
(α1+α2)
i , and neg(params, u1) ∈

S
(−α1)
i , subject to bounds on the noise.

Multiplication. For u1 ∈ S
(α1)
i1

,u2 ∈ S
(α2)
i2

, such that

i1 + i2 ≤ n, we have mult(params, u1, u2) ∈ S
(α1α2)
i1+i2

.
Zero-test. The procedure isZero(params, pzt, u) outputs

1 if u ∈ S
(0)
n and 0 otherwise. Note that in conjunction

with the procedure for subtracting encodings, this gives us
an equality test.

Extraction. This procedure extracts a ”canonical” and
”random” representation of ring elements from their level-
n encoding. Namely ext(params, pzt, u) outputs (say) K ∈
{0, 1}λ, such that:
(a) With overwhelming probability over the choice of α ∈ R,

for any two u1, u2 ∈ S
(α)
n , ext(params, pzt, u1) = ext(params,

pzt, u2),

(b) The distribution {ext(params, pzt, u) : α ∈ R, u ∈ S
(α)
n }

is statistically uniform over {0, 1}λ.

2.1.2 Graded Decisional Diffie-Hellman Problem
Garg et al. [GGH13] and Coron et al. [CLT13] define

Graded DDH Problem (GDDHProblem), as following pro-
cess:

1. (params, pzt)← InstGen(1λ, 1κ)
2. Choose aj ← samp(params) for all 1 ≤ j ≤ κ+ 1
3. Set uj ← reRand(params, 1, enc(params, 1, aj)) for all
1 ≤ j ≤ κ+ 1
4. Choose b← samp(params)
5. Set ũ = aκ+1 ×Πκ

i=1ui

6. Set û = b×Πκ
i=1ui

The GDDH distinguisher is given as input the κ+1 level-
one encodings uj and either ũ (encoding the right product)
or û (encoding a random product), and must decide which
is the case.

Graded Decisional Diffie-Hellman Assumption (GDDH
Assumption) The Graded Decisional Diffie-Hellman As-
sumption is that the advantage of any efficient adversary is
negligible in the security parameter against Graded Deci-
sional Diffie-Hellman Problem.

3. GROUP KEY EXCHANGE USING MUL-
TILINEAR MAPS

The graded encoding system has a function that extracts a
deterministic value associated with a plaintext from a speci-
fied level encodings and the level is specified at the instance
generation. This functionality fits with a group key ex-
change (GKE) because the shared key should be generated
from secrets of all parties. We construct a GKE protocol
which communication type is (N-1)-round 2-way of upflow
and downflow. The construction is simple, each party mul-
tiplies a received encoding by own encoding and sends the

14

Table 1: Comparison of performance with respect
to the number of parties (per party)

Scheme Comm. Comp.
One-round using MM [GGH13] O(N) O(N)

upflow/downflow no MM [STW96] O(N) O(N)
upflow/downflow using MM (ours) O(1) O(1)

result encoding to the next party. In the communicated en-
coding, secrets of passed parties are piled up, so the message
complexity per party does not depend on the number of par-
ties. Also, the computation cost for each party is O(1).
In Table 1, we compare our GKE scheme with two other

schemes in terms of their performance with respect to the
number of parties, ’N’ means the number of parties, ’Comm.’
is communication size and ’Comp.’ is computation cost. The
first scheme is one-round GKE using Multilinear Maps in
[GGH13]. In this scheme, communicated encodings are not
product, so the number of encodings per party is O(N) and
the cost one party multiplies received encodings is O(N).
The second scheme [STW96] is upflow/downflow type like
ours but it does not use Multilinear Maps. The number of
communicated group elements per party is O(N) and the
computation cost per party is also O(N).
In our protocol, we design the shared group key as output

value of pseudo-random function which seed is a level-(N −
1) encoding generated by above process and which input
value is a session ID. We use graded encoding system for
the session ID to achieve theoretically that the conputation
cost and communication size per party are O(1). So we make
two instances of graded encoding system for level-(N − 1)
and level-N .
We prove our protocol under GDDH assumption using

security model proposed by Bresson et al [BCPQ].

3.1 BCPQ Model : Security Model for GKE
BCPQ Model is a formal model for Group Key Exchange

protocol (GKE) proposed by Bresson, Chevassut, Pointcheval,
and Quisquater [BCPQ]. In their model, the adversary A
controls all communication between player instances and
asks an instance to release session key or long-lived key. A
set ID of n players in protocols P is fixed. A player Ui ∈ ID
can have many instances called oracles, involved in distinct
concurrent execution of P . An instance s of player Ui is
denoted as oracle Πs

i .
SessionIDS. Session id for oracle Πs

i is defined as SIDS(Πs
i) =

{SIDSij : j ∈ ID} where SIDSij is the concatenation of
all flows that Πs

i exchanges with Πt
j in an execution of P .

Adversary A listens on the wire and can constructs SIDS.
Oracle Queries. Adversaries can send following queries

to oracles:
·Send(Πs

U ,m):Adversary A gets the response which Πs
U have

generated in processing incoming-message m.
·Reveal(Πs

U):This query forces Πs
U to release its session key.

·Corrupt(U):Adversary A gets long-lived key LLU of U but
does not get the internal data of instance of U.
·Test(Πs

U):A gets back session key or random string from
Πs

U .

Definition 2 (Correctness). A GKE protocol is
correct if for any operation execution between the oracles
Πs

U1
, · · · ,Πs

UN
with the same session ids sid = SIDS(Πs

i) all

oracles accept with the same session group key.

Definition 3 (AKE Security). Protocol P is called
AKE-secure if advantage of any efficient A in the following
game GameAKE(A) is negligible.

GameAKE : Adversary A can ask queries except Test many
times, and once, A sends a Test-query to a fresh oracle (a
oracle is fresh if nobody has been asked for Corrupt-query
at that moment, and no Reveal-query is asked to the oracle
or its partners). A gets back its session key or a random
string. The adversary wins if she correctly guesses the bit b
used in the above game, and the advantage is probability of
win minus 1/2, taken over all bit tosses.

3.2 Our Construction
Our scheme consists of PPT algorithms Setup, Upflow,

Downflow and KeyGen, and parties are indexed Party1 to
PartyN , and Partyi is connected to Partyi+1 (1 ≤ i ≤ N−1).
This GKE protocol first executes the Setup algorithm and
the resulting public information should be shared among
parties. Party1 executes Upflow1 without input value. Then,
Partyi executes Upflowi, receiving the outputs (cur, dur, σur)
of its precedent Upflowi−1 as inputs, sequentailly for i = 2
to N . Then, PartyN executes DownfowN without input
value and Partyi executes Downflowi, receiving the outputs
(cdr, ddr, σdr) of the precedent Downflowi+1 as inputs, also
sequentailly for i = (N−1) to 1. In the Downflow sequence,
each Downflowi invokes the algorithm Keygen to compute
the shared session-key ξ among the parties.

Building blocks are multilinear maps MM, EUF-CMA se-
cure signature scheme Σ and pseudo random function Hseed.
In the following algorithm, a· b denotes mult(params, a, b).

Setup. The algorithm Setup takes security parameter λ
and number of parties N as input, makes two sets of MM
parameter by instance generation specifying level N −1 and
N , respectively. Then it generates N pairs of signing key
ski and verification key vki by key generation of Σ, and sets
signing keys to each parties. The algorithm outputs two sets
of parameter of MM and all verification keys {vki} as public
parameter.

Setup(1λ, 1N)
(params1, pzt1)← MM.InstGen(1λ, 1N−1)
(params2, pzt2)← MM.InstGen(1λ, 1N)
for i = 1 to N

(vki, ski)← Σ.KeyGen(1λ)
Sets ski to Ui

return (params1, pzt1, params2, pzt2, vki(1 ≤ i ≤ N))

Upflow. The algorithm Upflow takes encoding cur, dur and
signature σur as input and verifies them on sender’s verifica-
tion key vki−1. Then it creates a secret level-0 encoding ai

and upgrades to level-1 and rerandomizes that using param1.
The algorithm creates one more level-1 encoding d1 for ses-
sionID using param2. Then, multiplies them by received
encoding and outputs the two encodings with its signature
σus.

Upflowi(cur, dur, σur)
if i ̸= 1 and Σ.verify(vki−1, cur∥dur, σur)=false then abort
ai ← MM.samp(params1)

15

ci ← MM.reRand(params1, 1,MM.enc(params1, 1, ai))
di ← MM.reRand(params2, 1,MM.enc(params2, 1
,MM.samp(params2)))
if i ̸= N then

if i = 1 then cus := ci dus := di
else cus := cur· ci dus := dur· di
σus ← Σ.sign(ski, cus∥dus)
return (cus, dus, σus)

Downflow. The algorithm Downflow takes encodings cdr,ddr
and signature σdr as input and verifies them on sender’s ver-
ification key vki+1. Then it generates a session key ξ by key
generation algorithm, and multiplies own two encoding ci
and di by received encoding cdr and ddr respectively, and
outputs the result encodings with its signature σds.

Downflowi(cdr, ddr, σdr)
if i ̸= N and Σ.verify(vki+1, cdr∥ddr, σdr)=false then abort
if i ̸= 1 then

if i = N then cds := ci dds := di
else cds := cdr· ci dds := ddr· di
σds ← Σ.Sign(ski, cds∥dds)

ξ ← KeyGen(ai, cur, cdr, di, dur, ddr)
return (cds, dds, σds) as message and ξ as local output.

KeyGen. The algorithm KeyGen takes encodings ai, cur, cdr
, di, dur, ddr as input, multiplies ai, cur, cdr for seed of H
and di, dur, ddr for sessionID. MM.ext extracts a determin-
istic value from level-(N − 1) encoding c′i, and KeyGen al-
gorithm sets it to seed of H. A deterministic value from
level-N encoding d′i is sessionID and input to H.

KeyGeni(ai, cur, cdr, di, dur, ddr)
c′i := ai· cur· cdr d′i := di· dur· ddr
δ ← MM.ext(params1, pzt1, c

′
i)

sessionID ← MM.ext(params2, pzt2, d
′
i)

return ξ ← Hδ(sessionID)

Correctness. We show all parties share a same session
key string. Considering output string from H in KeyGen al-
gorithm, seed δ of H is the product of own private level-0
encoding and level-1 encodings of all other parties. MM.ext
outputs the same string that is a deterministic value of prod-
uct of plaintexts ai of all parties. SessionID is product of
level-1 encodings di of all parties, so MM.ext outputs the
same value for each parties.

3.3 Proof of Security

Theorem 1. Our protocol is AKE secure under the GDDH
Assumption (see Section A.2), and the assumptions that the
signature scheme Σ is EUF-CMA and the function H is se-
cure PSF.

Proof. We prove the security of our protocol based on
BCPQ security model.

Game0: Original Security game for our protocol
–Send(null,”start”)
Follow the instruction of the Setup algorithm to compute
and return (params1, pzt1, params2, pzt2, vki(1 ≤ i ≤ N)).

–Send(Πs
i , Upflow(cur, dur,σur))

Follow the instruction of the Upflowi algorithm to compute

and return (cus, dus, σus).

–Send(Πs
i , Downflow(cdr, ddr,σdr))

Follow the instruction of the Downflowi algorithm to com-
pute and return (cds, dds, σds) and local output ξ.

–Reveal(Πs
i): return ξ

–Corrupt(Ui): return ski

–Test(Πs
i)

b
$← {0, 1}

if b = 0 then return ξ else return r
$← {0, 1}λ

Then adversary A outputs guess of b as b̂ .

We define Si to be the event that b = b̂ in Gamei.

Game1: We make a transition into Game1: Abort if mes-
sage is fabricated.

–Send(Πs
i , Upflow(cur, dur,σ))

if cur∥dur /∈ m′ and Σ.verify(vki−1, cur∥dur, σur)=true

then abort
if i ̸= 1 and Σ.verify(vki−1, cur∥dur, σur)=false then abort

m′ := m′∥cur∥dur
// following is same as Game0

–Send(Πs
i , Downflow(cdr, ddr,σ))

if cdr∥ddr /∈ m′ and Σ.verify(vki+1, cdr∥ddr, σdr)=true

then abort
if i ̸= N and Σ.verify(vki+1, cdr∥ddr, σdr)=false then abort

m′ := m′∥cdr∥ddr
// following is same as Game0

Claim 1. If the signature scheme Σ is EUF-CMA secure,
then | Pr[S0]− Pr[S1] |≤ negl(λ).

Sketch of Proof. Let c and d be received encodings,
m′ be a set of messages that had been verified, vk be a
verification key and σ be a signature. We define failure
event F that ”(c, d) /∈ m′ and Σ.verify(vk, c∥d, σ) = true”.
Then, S0 ∧ ¬F ⇔ S1 ∧ ¬F . Let A be an adversary that
can get an advantage in distinguishing between Game0 and
Game1. We construct a forger F from A.

Forger F . F guesses a party j whose signature A will
forge. In Setup algorithm, F sets input vk to vkj of party j.
A sends Send-query to Πs

i , if i=j and event F then F outputs
the ((c, d), σ). F calls signing oracle to get signature of j.

The probability of F successes in above game is 1/N ·
Pr[F] and signature scheme Σ is EUF-CMA, so Pr[F] ≤
negl(λ). From Difference Lemma defined by Shoup in Se-
quence of Games [Shoup], |Pr[S0]−Pr[S1] |≤Pr[F].
∴ |Pr[S0]−Pr[S1] |≤ negl(λ). 2

Game2: We make a transition into Game2. In this game,
seed of H is changed into random encoding which is formed
by GDDH Problem instance.

–Test(Πs
i)

16

b
$← {0, 1}

if b = 0 then
a′ ← MM.samp(params1)

c′i := a′ · cur · cdr d′i := di· dur· ddr
δ ← MM.ext(params1, pzt1, c

′
i)

sessionID ← MM.ext(params2, pzt2, d
′
i)

ξ ← Hδ(sessionID)
return ξ

else return r
$← {0, 1}λ

Claim 2. Under GDDH the assumption,
| Pr[S1]− Pr[S2] |≤ negl(λ).

Proof. We construct a distinguisher D of GDDH Prob-
lem from adversary A against our protocol. D guesses a
party whom A will ask Test-query. Its instance and partner
instances are denoted by Πs∗

i . We define a event Guess that
is ”All Πs∗

i are correct”. If input of D is ũ then the view of
A in D is view of A in Game1, and if input of D is û then
that is view of A in Game2.
Algorithm D(uj(1 ≤ j ≤ N), T = ũ or û)

s∗i
$←[1,S] //S is upper bound of numbers of instances A

creates.

–Send(Πs
i , Upflow(cur, dur, σ))

if s = s∗i then

if cur∥dur /∈ m′ and Σ.verify(vki−1, cur∥dur, σur)=true
then abort

if i ̸= 1 and Σ.verify(vki−1, cur∥dur, σur)=false then
abort

m′ := m′∥cur∥dur
ci ← ui

di ← MM.reRand(params2, 1,MM.enc(params2, 1
,MM.samp(params2)))

if i ̸= N then
if i = 1 then cus := ci dus := di
else cus := cur· ci dus := dur· di
σus ← Σ.Sign(ski, cus∥dus)
return (cus, dus, σus)

else // s ̸= s∗i , following is same as Game1

–Send(Πs
i , Downflow(cdr, ddr, σ))

if s = s∗i then

if cdr∥ddr /∈ m′ and Σ.verify(vki+1, cdr∥ddr, σdr)=true
then abort

if i ̸= N and Σ.verify(vki+1, cdr∥ddr, σdr)=false then
abort

m′ := m′∥cdr∥ddr
if i ̸= 1 then

if i = N then cds := ci dds := di
else cds := cdr· ci dds := ddr· di
σds ← Σ.Sign(ski, cds∥dds)
// MM.KeyGen is not called.

return (cds, σds)

else // s ̸= s∗i , following is same as Game2

–Reveal(Πs
i)

if s = s∗i then abort with a random bit

return ξ

–Corrupt(Ui): return ski

–Test(Πs
i)

if s ̸= s∗i then abort with a random bit

b
$← {0, 1}

if b = 0 then
d′i := di· dur· ddr
δ ← MM.ext(params1, pzt1, T)

sessionID ← MM.ext(params2, pzt2, d
′
i)

return ξ ← Hδ(sessionID)

else return r
$← {0, 1}λ

The advantage of D is AdvD = | Pr[D(uj , T)=1 | T = ũ]
- Pr[D(uj , T)=1| T = û] |. Now we describe Pr[D(uj , T)=1 |
T = ũ] as Pr[D(ũ)=1], Pr[D(uj , T)=1| T = û] as Pr[D(û)=1].

Pr[D(ũ)=1] = Pr[D(ũ)=1 ∧ ¬ Guess] + Pr[D(ũ)=1 ∧ Guess]
=1/2 + Pr[Guess]Pr[D(ũ)=1 | Guess]
=1/2 + Pr[Guess]Pr[S1]

Pr[D(û)=1] = Pr[D(û)=1 ∧ ¬ Guess] + Pr[D(û)=1 ∧ Guess]
=1/2 + Pr[Guess]Pr[D(û)=1 | Guess]
=1/2 + Pr[Guess]Pr[S2]

AdvD = | Pr[D(ũ)=1] - Pr[D(û)=1] | = Pr[Guess]·(Pr[S1]-
Pr[S2])
From GDDH assumption AdvD ≤ negl(λ), and Pr[Guess] is
1/poly(λ). Therefore |Pr[S1]-Pr[S2]| ≤ negl(λ). 2

Game3: We make a transition into Game3. In this game,
the value of H is changed into a random string.

–Test(Πs
i)

b
$← {0, 1}

if b = 0 then return r′
$← {0, 1}λ

else return r
$← {0, 1}λ

Claim 3. If H is secure then | Pr[S2]− Pr[S3] |≤ negl(λ).

Proof. Immediate from security of pseudo-random func-
tion. 2

The advantage of A is clearly negligible in Game3 and
from Claim1,Claim2,Claim3, the advantage of A of real is
also negligible. 2

4. WITNESS ENCRYPTION USING MUL-
TILINEAR MAPS

4.1 Preliminaries

4.1.1 Witness Encryption
A witness encryption scheme [GGSW] for an NP language

L(with corresponding witness relation R) consists of the fol-
lowing two polynomial-time algorithms:

Encryption. The algorithm Encrypt(1λ, x,m) takes as
input a security parameter λ, an unbounded-length string
x, and a message m ∈M , and outputs a ciphertext CT .

Decryption. The algorithm Decrypt(CT,w) takes as in-
put a ciphertext CT and an unbounded-length string w, and
outputs a message m or the symbol ⊥.

17

· Correctness. For any security parameter λ, for any m
and for any x ∈ L s.t. R(x,w) holds, we have that Pr[
Decrypt(Encrypt(1λ, x,m), w) = m] = 1− negl(λ).
· Soundness Security. For any x /∈ L, for any PPT adversary
A and messages m0,m1 ∈M,
| Pr[A(Encrypt(1λ, x,m0)) = 1] - Pr[A(Encrypt(1λ, x,
m1)) = 1] |≤ negl(λ).

The Security-Correctness Gap. Correctness requires
an algorithm can decrypt if x ∈ L and it knows w s.t.
R(x,w). Soundness Security requires if x /∈ L then no PPT
algorithm can decrypt. This security does not define on the
case when x ∈ L. But since distinguishing x ∈ L and x /∈ L
is NP-complete, decryption would be difficult even if x ∈ L.

4.1.2 Definition of Graph and Hamilton Cycle Prob-
lem

A graph G = (V,E) is a pair of a set of vertices V and
a set of edges E associated with pairs of vertices, both be-
ing assumed finite. Let V (G) = {v1, v2, · · · , vn}, E(G) =
{e1, e2, · · · , em}, |V | = n, |E| = m. We will describe an edge
between vertex vi and vertex vj as ei,j . A walk of length k
from v0 to vk is P = (V,E) with V = {v0, v1, · · · , vk}, E =
{e0,1, · · · , ek−1,k}. A path is a walk with all different ver-
tices. A cycle is a path which start vertex is equal to the
goal vertex. A cycle that visits all vertices of V is called
a Hamilton Cycle (HC). A directed graph is a graph where
each edge has a direction, in such graph, ei→j denotes an
edge from vertex vi to vertex vj . An undirected graph is one
where every edge has both ei→j and ej→i. A simple graph
is one which has no self-loop or multiple edges.
The Hamilton Cycle Problem (HCP) is that, given a graph

G = (V,E), decide whetherG has a HC or not. A graph with
a HC is called Hamiltonian Graph. HCP is NP-complete
both for directed graphs and undirected graphs.

4.1.3 Generic Colored Matrix Model
Garg et al. defined a generic colored matrix model in

[GGH13+] that captures attacks where the adversary is only
allowed to add/multiply matrices in the correct order. They
represent this restriction as color assigned to left and right of
matrix and handle. For every matrix M , the corresponding
record is (h,M, (m,LC), (n,RC)) where h is handle, M is
m× n matrix, LC is left color, and RC is right color.
Setup. The represent oracle choose an initial set of l

colored matrices and assigns to them the handle, inserts into
the database the record {(hi,Mi, (mi, LCi), (ni, RCi))}li=1,
and sends {(hi, (mi, LCi), (ni, RCi))}li=1 to the adversary
but not the matrix M .
The adversary sends queries through two handles. A rep-

resent oracle, who performs generic computation to the ad-
versary, looks up records corresponding the two handles in
the database and if their color and row/column size sat-
isfy the order restriction of addition or multiplication then
the oracle adds or multiplies the two matrices. If the re-
sult record is not in the database then the oracle inserts the
record with new handle h′ into database. Then the oracle
returns a contained or new handle. The adversary being un-
able to get matrix, he can only adds and multiplies through
given handles. The following is the process of representation
oracle.
Addition. When the adversary makes query add(h1, h2),

the oracle looks up the records corresponding to h1, h2 in
the database. If such records exists, then if (m1, LC1) =
(m2, LC2) and (n1, RC1) = (n2, RC2) then the oracle com-
putes their sum M = M1+M2. If the database already con-
tains the matrix (M, (m1, LC1), (n1, RC1)) then oracle re-
turns its handle. Otherwise, the oracle assigns a new handle
h′ and inserts into the database (h′,M, (m1, LC1), (n1, RC1))
and returns the new handle.

Multiplication. When the adversary makes querymult(h1,
h2), the oracle looks up the records corresponding to h1, h2

in the database. If such records exists, then if (n1, RC1) =
(m2, LC2) then the oracle computes their product M =
M1M2. If the database already contains the matrix (M, (m1,
LC1), (n2, RC2)) then oracle returns its handle. Otherwise,
the oracle assigns a new handle h′ and inserts into the database
(h′,M, (m1, LC1), (n2, RC2)) and returns the new handle.

4.2 Design Principle
We use a directed hamiltonian graph to construct our wit-

ness encryption. First, we consider design of blinding factor
which hides plain text. HC passes every vertex in a graph
exactly once , so we assign a secret to every vertex and set
some value storing the secret to every edge. We generate
a blinding factor from these secrets of all vertices and hide
a message by the blinding factor and make it a ciphertext.
Another components of ciphertext are edge secrets. One
who knows a HC can collect all secrets from ciphertext us-
ing the knowledge of HC and he can recover the blinding
factor. Difficulty of designing such blinding factor is that,
during decrypt one who knows HC can generate the blind-
ing factor and during encrypt the encryptor creates the same
value without knowledge of HC.

We adopt to use high-dimensional matrix for achieving
this restriction of ordering on decryption because of matrix
holds non-commutative. We assign an adjacency matrix to
each edge, in which we set a secret of starting vertex, and
put these adjacency matrices of all edges in the ciphertext.
A decryptor who knows the HC can multiply all adjacency
matrices in the order of the given HC and can make a prod-
uct of the secrets of all vertices in the graph. The product
value has no order, so the encryptor also can make the same
value.

Detail of the design. We name vertices by its index
like 1, 2, · · · , n and let Pi→j be a matrix assigned to an edge
ei→j . We set a secret si of vertex i to the (i, j)-th element
in Pi→j . An element of (i, j) in a product matrix of two
adjacent matrices Pi and Pj is a product sisj . By multiply-
ing matrices of edge in order of the given HC which starts
and goals at vertex i, the element of (i, i) in the product
matrix is Πj∈[n]sj . This value is independent of the order of
vertices, so encryptor also can make this value from secrets
assigning to vertices.

To prevent pulling out a secret si in the edge matrix Pi→j ,
it is necessary to randomize edge matrices. For this, we take
in a technique of oblivious transfer proposed by Joe Kilian
[Kil88]. We assign a randomized matrix Ri and its inverse
R−1

i to each vertex and set R−1
i Pi→jRj be a new edge ma-

trix. When multiply these new matrix of adjacency edge,
e.g. R−1

i Pi→jRj and R−1
j Pj→kRk , the product RjR

−1
j be-

comes identity matrix, so the connected edge matrices be-
comes R−1

i Pi→jPj→kRk. This works sequentially, a product
matrix of connected edge matrices in a path that starts ver-
tex i and goals vertex x becomes R−1

i Pi→j · · ·P(x−1)→xRx.

18

If i ̸= x then, the secret Πx−1
k=i sk in the matrix Πx−1

k=iPk is
randomized, so it is impossible to pull out the secret. The
other hand, if i = x then, the product is R−1

i Pi→j · · ·Py→iRi

and it is possible to pull out a trace Πy
k=isk of this product.

This means that this construction has a problem that one
who does not know HC can make blinding factor Πj∈[n]sj
from traces of partial cycles. We call partial cycle as ”short
cycle”.

Definition 4 (Short Cycle). We call a cycle ”short
cycle” if the cycle satisfies:
1. The cycle does not pass all vertices in a graph.
2. Each vertices in the cycle is passed only once.

In other words, ”short cycle” is a cycle except HC.
We assign one more secret ri to each vertex i and set

that to the (1, 1)-th element of every edge matrix Pi→j . A
(1, 1)-th element of a product matrix of edge matrices in a
cycle that starts and goals vertex 1 becomes Πri +Πsi. We
regard HC as a cycle that starts and goals vertex 1, so a
element (1, 1) in product of edge matrices in HC becomes
Πj∈[n]rj + Πj∈[n]sj . This value is unable to be calculated
from traces, that are Πr+Πs from a short cycle not including
vertex 1.
For the purpose of security proof, we assign another ma-

trix R′
1 instead of R−1

1 s.t. R′
1R1 ̸= identity matrix. In a

product of in-edge matrix and out-edge matrix about ver-
tex 1, R−1

1 R′
1 is not canceled, so it prevent pulling out a

trace. The blinding factor is now changed to R′
1(Πj∈[n]rj +

Πj∈[n]sj)R1.
Every values assigned to vertex (i.e., secrets si, ri and

all elements of random matrices Ri, R
−1
i and R′

1) are en-
coded at level-0 by sampling algorithm of multilinear maps.
During making edge matrix in encrypt algorithm, all com-
ponents in edge matrix R−1

i Pi→jRj are encoded to level-1
and rerandomized, the rerandomized encoding keeps addi-
tive and multiplicative homomorphism but does not keep
homomorphism divisionally. We set up this encoding sys-
tem with level-n. Using this zero-test parameter, we can
extract a deterministic string from level-n encoding of each
element in R′

1(Πj∈[n]rj+Πj∈[n]sj)R1. We concatenate these
extracted values and extract a random value of this concate-
nation by a strong randomness extractor. The extracted
value is finally our blinding factor.

4.3 Our Construction
In our scheme of witness encryption, a NP-complete lan-

guage is Hamilton Cycle Problem, and a statement is a graph
G. As building blocks, we use a multilinear map MM and a
randomness extractor ext. Notations: The symbol || denotes
to concatenate strings. We omit ”params” for simplicity in
the following algorithms.

4.3.1 Concrete Construction
Encryption. Encryption algorithm takes as input security

parameter λ, a graph G of n vertices as statement of lan-
guage, and a message m. First, it generates parameters of
MM specifying level-n. Next, creates a level-0 encoded ran-
dom matrix Ri and samples two level-0 encodings ri and si
for every vertices i in G. Then it creates matrix Pi→j for
edge ei→j and set ri and si to the matrix. A public matrix

Êi→j is product of R−1
i , Pi→j and Ri, whose elements are

encoded level-1. Last, it creates blinding factor from all si
and ri and hides a message m.

Encrypt(1λ, G,m)→ CT
(params, pzt)← MM.InstGen(1λ, 1n)
for i ∈[n] // all vertices

Ri ← sampMatrix(n)
if i = 1 then R′

1 ← sampMatrix(n)
else create a invert matrix R−1

i from Ri

ri ← samp() si ← samp()
for i ∈[n]

for j s.t. edges i→ j are out-edges of vertex i in G
create a n× n matrix Pi→j

(Pi→j)1,1 := ri (Pi→j)i,j := si
(Pi→j)x,y := 0 if (x, y) ̸= (1, 1) and (i, j)
if i = 1 then Ei→j := R′

1P1→jRj // level-0

else Ei→j := R−1
i Pi→jRj // level-0

Êi→j ← encodeMatrix(1, Ei→j) // level-1

Create an n× n matrix P ′

(P ′)1,1 := Πi∈[n]ri +Πi∈[n]si
(P ′)x,y := 0 if (x, y) ̸= (1, 1)
for i, j ∈ [n]

u := u||MM.ext(pzt,MM.enc(n, (R′
1P

′R1)i,j))
C := m⊕ ext(u)

return CT = (C, {Êi→j}(i,j)∈E(G), G)

sampMatrix(n)→ M
create a n× n matrix M
for i, j ∈ [n]

Mi,j ← MM.samp() // level-0

return M

encodeMatrix(k,M)→M
for i, j ∈ [n]

Mi,j ← MM.reRand(k,MM.enc(k,Mi,j)) //level-k
return M

Decryption. Decryption algorithm takes as input a cipher-
text CT and a hamilton cycle HC as witness. We can
suppose the first vertex of HC is vertex 1. The algorithm
chooses edge matrix in CT in the order of HC and multi-
plies them. Then it extracts a deterministic string for every
element in the product by MM.ext and it concatenates all
of the strings. Here j = HC(i) denotes a next vertex to i in
HC {· · · , i, j, · · · } .

Decrypt(CT,HC)

M := Ê1→HC(1)ÊHC(1)→HC2(1) · · · ÊHCn−1(1)→1

for i, j ∈ [n]
u := u||MM.ext(pzt,MM.enc(n,Mi,j))

return m := C ⊕ ext(u)

4.3.2 Correctness
Now we show a blinding factor u recovered in the decryp-

tion algorithm is the same as u in the encryption algorithm.
First, we evaluate M in the decryption. Every element in M
is rerandomized encoding and we can homomorphically add
and multiply them. So M is equivalent to level-n encoding
of the following product.

(R′
1P1→2R2)(R

−1
2 P2→3R3) · · · (R−1

(n−1)P(n−1)→1R1)

= R′
1P1→2P2→3 · · ·P(n−1)→1R1

Let P ′′ be P1→2P2→3 · · ·P(n−1)→1 , then P ′′
1,1 = Πi∈[n]ri+

Πi∈[n]si and P ′′
x,y = 0 for (x, y) ̸= (1, 1). So P ′′ is equal to

P ′ calculated in the encryption algorithm. For each element
in P ′ and P ′′, their output values by MM.ext are the same.

19

Therefore the blinding factor made by the encryption algo-
rithm and the decryption algorithm are the same.

4.4 Proof of Security: Soundness Security
First we define a variant of generic colored matrix model:

a generic cyclic colored matrix model, and then define a se-
curity game based on the model.

4.4.1 Generic Cyclic Colored Matrix Model
We define a generic cyclic colored matrix model by ex-

panding a generic colored matrix model defined by Garg et
al. in [GGH13+] that captures attacks where the adversary
only adds and multiplies matrices in the correct order.
A matrix in our ciphertext is sandwiched in between two

random matrices, when multiply adjacent edge matrices,
such random matrices are canceled. But when multiply
not-adjacent edge matrices, they are not canceled and ran-
domization remains . The generic colored matrix model
[GGH13+] modeled this situation as colored matrix: an ad-
versary multiply matrices only if he queries two matrices
such that RC1 is the same as LC2. Since our ciphertexts
are encoded, we can add and multiply elements in matrices
homomorphically but we can not divide one by another. In
the generic colored matrix model [GGH13+], a adversary
queries add and mult using handle, so, this models our en-
coding restriction.
If the LC and RC of a result matrix M are same then

a trace of matrix M is possible to be pulled out. In the
oracle’s process in our model, when such case, the oracle
computes a trace of the result matrix M , and returns a
record additionally for the trace. In our model, there are two
record types: ”Matrix Type” and ”Scalar Type”. We add a
query scalar mult that multiplies a trace value in a ”Scalar
Type” record by a matrix in a ”Matrix Type” record.
We does not return a handle of a eigenvalue of a ma-

trix, because computing the eigenvalue needs division dur-
ing Gaussian elimination, but the division is not provided
on the encoding system used in our scheme.
Detail of The Generic Cyclic Colored Matrix Model

Setup and Addition algorithms are the same as the original
generic colored matrix model. In Multiplication algorithm,
the following process is executed after Multiplication process
of the original model. If the types of record corresponding
h1 and h2 are both matrix type and LC1 and RC2 of result
matrix are the same then the oracle computes a trace M ′

of the result matrix. If the trace is in the database then re-
turns its handle, otherwise inserts into the database the new
record with new handle (h′′,M ′, (1, 0), (1, 0)) and returns its
handle.
Scalar Multiplication. When the adversary makes query

scalar mult(h1, h2), the oracle looks up the records corre-
sponding to h1, h2 in the database. If such records ex-
ists, we view the first record as matrix type and the sec-
ond record as scalar type, then the oracle computes product
M =trace×M1. If the database already contains the matrix
(M, (m,LC), (n,RC)) then oracle returns its handle. Oth-
erwise, the oracle assigns a new handle h′ and inserts into
the database (h′,M, (m1, LC1), (n1, RC1)) and returns the
new handle.

4.4.2 Definition of Security Game for Witness En-
cryption using Multilinear Maps

We define a security game based on the generic cyclic col-

ored matrix model for our witness encryption using multi-
linear maps. In our witness encryption, a matrix assigned to
each edge corresponds to one record in the generic cyclic col-
ored matrix model. To multiply two colored matrices(h1,M1,
(m1, LC1), (n1, RC1)) and (h2,M2, (m2, LC2), (n2, RC2)) by
mult(h1, h2) means to make a path by connecting two edges,
and if LC1 = RC2, it means that the start vertex and the
goal vertex are the same, in other words, a path becomes
a cycle in our scheme. So, in the security game, the rep-
resentation oracle returns a handle of trace if the result of
mult(h1, h2) becomes a cycle. Exceptionally, a random ma-
trix R′

1, which is not a inverse of R1, is assigned to out-edges
of vertex 1, so the left and right colors are different and the
oracle does not return a handle of trace in this case.

Details of the Security Game for our Witness En-
cryption.
Setup. The oracle is given a graph G, it makes matrix type
records for all edges in G and inserts into database them and
returns their representations {(h, (m,LC), (n,RC))} with-
out giving matrix M itself to the adversary. To say more
details, the oracle samples two level-0 encoded secrets ri
and si by MM.samp() for each vertex i. For every edge
ei→j , it sets the secrets to a adjacent matrix Mi→j where
(Mi→j)1,1 = ri and (Mi→j)i,j = si, and inserts into the
database those records {(h,Mi→j , (n, i), (n, j))}. Then it
gives {(h, (n, i), (n, j))} to the adversary.

Addition. When the adversary makes query add(h1, h2),
the oracle looks up the records corresponding to h1, h2 in
the database. If such records exists then, if (m1 ̸= m2) or
(LC1 ̸= LC2) or (n1 ̸= n2) or (RC1 ̸= RC2) then return bot.
Otherwise, it adds M = M1 + M2 and looks up the record
(M, (m,LC), (n,RC)), if it exists in the database then re-
turns the handle, otherwise the oracle inserts the record
(h,M, (m,LC), (n,RC)) with new handle h and returns the
handle.

Multiplication. When the adversary makes querymult(h1,
h2), the oracle looks up the records corresponding to h1, h2

in the database. If such records exists, if n1 ̸= m2 or RC1 ̸=
LC2 then return bot. Otherwise, it multiplies M = M1M2

and looks up the record (M, (m1, LC1), (n2, RC2)), if it ex-
ists in the database then returns the handle, otherwise the
oracle inserts the record (h,M, (m1, LC1), (n2, RC2)) with
new handle h and returns the handle. If the matrices cor-
responding to h1, h2 are both matrix type and they starts
and goals at same vertex such that the vertex is not 1 then
the oracle computes a trace of M and puts the trace to
1 × 1 matrix M and inserts into the scalar type record
(h,M, (1, 0), (1, 0)) and returns its handle to the adversary.

Scalar Multiplication. When the adversary makes query
scalar mult(h1, h2), the oracle looks up the records corre-
sponding to h1, h2 in the database. If such records exists,
let first record to be matrix type, second record to be scalar
type, then the oracle multiplies M = (M2)1,1M1 and looks
up the record (M, (m1, LC1), (n1, RC1)), if it exists in the
database then returns the handle, otherwise the oracle in-
serts the record (h,M, (m1, LC1), (n1, RC1)) with new han-
dle h and returns the handle.

4.4.3 Proof of Security

Theorem 2. Our witness encryption based on HC is sound-
ness secure in the generic cyclic colored matrix model.

20

More precisely, the probability that an adversary distin-
guishes a real model and a simulation is bounded above
T 3/p from the Schwartz-Zippel lemma [S80] [Z79] where an
adversary receives at most T handles from the oracle and the
secrets r, s are independently and uniformly chosen from Zp.
T 3 means a number of handles × a number of combinations
of r, s.
Proof. We make simulator which input is a graph which

does not have any HC, and show that there is no handle
of the matrix corresponding to the ”full cycle”:Πj∈[n]rj +
Πj∈[n]sj in a view of the adversary.

Algorithm of Simulator. We assume there are t short
cycles which does include vertex 1 in a given graph G. Let
sc be a set of vertices of a short cycle. Input values to a
simulator is a graph G. When simulator needs to return a
handle of trace, it calculates a trace from the result matrix,
then returns the result’s handle.
Notations:
A given graph G has n vertices. A record reci denotes the
record (hi,Mi, (mi, LCi), (ni, RCi)) in the database.
Setup. A simulator makes edge matrices for all edges

in given graph G, and inserts into the database those edge
matrices and sends representations of edge without matrix
M to the adversary.

for i ∈[n] // all vertices
create a variable Ri Si

for j s.t. edges i→ j are out-edges of vertex i
create a n× n matrix Mi→j

(Mi→j)1,1 := Ri (Mi→j)i,j := Si

(Mi→j)x,y := 0 if (x, y) ̸= (1, 1) and (i, j)
hk := new handle
db.insert(hk,Mi→j , (n, i), (n, j))

give {(hk, (n, i), (n, j))} to the adversary.

Addition. If types of associated h1, h2 are both matrix
type, if their start vertices are same and their goal vertices
are also same then the simulator adds two matrices and in-
serts its record into database and returns the handle.

add(h1, h2)
rec1 = db.select(h1) rec2 = db.select(h2)
if (m1 ̸= m2) or (LC1 ̸= LC2) or (n1 ̸= n2) or (RC1 ̸=

RC2) then return ⊥
M = M1 +M2

h← db.select(M, (m1, LC1), (n1, RC1))
if h does not exist in database then

h := new handle
db.insert(h,M, (m1, LC1), (n1, RC1))
return h

Multiplication. If types of associated h1, h2 are both
matrix type, if first goal vertex and second start vertices are
same, and first col size and second row size are same then
the simulator multiplies the two matrices. If start and goal
are same but not 1 then it calculates a trace from the result
matrix M , and inserts its record into database and returns
the handle.

mult(h1, h2)
rec1 = db.select(h1) rec2 = db.select(h2)
if (n1 ̸= m2) or (RC1 ̸= LC2) then return ⊥

M = M1 ·M2

h← db.select(M, (m1, LC1), (n2, RC2))
if h does not exist in database then

h := new handle
db.insert(h,M, (m1, LC1), (n2, RC2))

if types of h1, h2 are matrix type and (LC1 = RC2) and
(LC1 ̸= 1) then

create 1 × 1 matrix Mt

(Mt)1,1 = M1,1 +MLC1,RC2

ht ← db.select(Mt, (1, 0), (1, 0))
if ht does not exist in database then

ht := new handle
db.insert(ht,Mt, (1, 0), (1, 0))

return (h, ht)
else return h

Scalar Multiplication. It multiplies a trace value in
scalar type record by a matrix in a matrix type record and
inserts the result record into database and returns the han-
dle.

scalar mult(h1, h2)
rec1 = db.select(h1) rec2 = db.select(h2)
let rec1 be a n× n edge matrix.
let rec2 be a 1× 1 trace matrix.
if not above then return ⊥
M = (M2)1,1 ·M1

h← db.select(M, (m1, LC1), (n1, RC1))
if h does not exist in database then

h := new handle
db.insert(h,M, (m1, LC1), (n1, RC1))
return h

Analysis. We discuss about difference of distributions of
adversary’s view between real model and simulation. The
simulator replaces random elements of edge matrices into
variables, so it’s possible that result of calculation of the
elements is in database at real model but not in database at
simulation. In such a case, he returns existing handle at real
model and returns new handle at simulation, so the view of
adversary is different. But its provability is bounded above
T 3/p from the Schwartz-Zippel lemma [S80] [Z79] where an
adversary receives at most T handles from the oracle and the
secrets r, s are independently and uniformly chosen from any
finite setS, |S| = p.

We show there is no record of our blinding factor in a
simulator’s database. Now we recall that our blinding fac-
tor is concatenation of all elements in the product matrix
R′

1(Πj∈[n]rj + Πj∈[n]sj)R1. We confirm about edge matrix
records at each query. After setup, value in matrix column is
M s.t. M1,1 = Ri and Mi,j = Si for every edge ei→j . When
two matrices M1 and M2 are added by add query, the result
matrix M is such that M1,1 = (M1)1,1 + (M2)1,1,Mi,j =
(M1)i,j +(M2)i,j and other elements are all zero. When two
matrices M1 and M2 are multiplied by mult query, if LC1 ̸=
1′ or RC2 ̸= 1 then the result matrix M is such that M1,1 =
(M1)1,1(M2)1,1,Mi,k = (M1)i,j(M2)j,k and other elements
are all zero. If LC1 = 1′ and RC2 = 1 then the result ma-
trix M is such that M1,1 = (M1)1,1(M2)1,1 +(M1)i,j(M2)j,k
and other elements are all zero. When a trace v and ma-
trix M1 are multiplied by scalar mult, the result matrix M
is such that M1,1 = v(M1)1,1,Mi,j = v(M1)i,j and other
elements are all zero. We notice that elements in M1 and

21

M2 in above queries may be multiplied by some traces by
scalar mult queries.
Now we consider whether there is a record of matrix M ′

s.t. M ′
1,1 = Πi∈[n]Ri + Πi∈[n]Si and other elements are all

zero for our blinding factor.

Claim 4. In the database, if there is records where LC =
1′ and RC = 1 and M1,1 has some value v and Mi,j (i, j ̸=
1) is zero then

v = Σsc(Πsc′i
(Πj∈sc′i

Rj +Πj∈sc′i
Sj))(Πj∈scRj +Πj∈scSj),

· · ·Eq(1)

where sc denotes a short cycle which starts and goals at ver-
tex 1, sc′ denotes a short cycle which does not include vertex
1.

Proof. A trace is registered into database when a short
cycle which does not include vertex 1 is made by mult query.
After the trace is registered, a matrix may be scalar multi-
plied by scalar mult query. Those matrices may be added
and multiplied by add and mult. Using such two matrices,
when a short cycle which starts and goals at vertex 1 is made
by mult, a record where LC = 1′ and RC = 1 and M1,1 has
some value v and Mi,j (i, j ̸= 1) is zero is registered. The
form of v is v = (ΣscΠsc′i

(Πj∈sc′i
Rj +Πj∈sc′i

Sj))(Πj∈scRj +

Πj∈scSj). From the observation before Claim 4, add and
scalar mult does not change the color and element position
of the result matrix, so records where LC = 1′ and RC = 1
must be made from records where LC = 1′ and RC = 1
by add or scalar mult. The result M1,1 has a form v =
Σsc(Πsc′i

(Πj∈sc′i
Rj +Πj∈sc′i

Sj))(Πj∈scRj +Πj∈scSj). 2

Claim 5. The Eq(1) never equals to Πi∈[n]Ri +Πi∈[n]Si.

Proof. To make Πi∈[n]Ri+Πi∈[n]Si, it is necessary to multi-
ply one (Πj∈scRj+Πj∈scSj) and some (Πj∈sc′i

Rj+Πj∈sc′i
Sj)

because the input graph does not contain any Hamilton Cy-
cle. The result has cross terms of RjSj , and for cancel-
ing this cross terms it needs a new product of (Πj∈scRj +
Πj∈scSj) and (Πj∈sc′i

Rj +Πj∈sc′i
Sj) of smaller short cycles.

Then the result has their new cross terms. To cancel those
cross terms recursively, finally it becomes sums of products
of (Πj∈scRj + Πj∈scSj) and (Πj∈sc′i

Rj + Πj∈sc′i
Sj) of min-

imum short cycles, and their cross terms are unable to be
canceled. Therefor the Eq(1) never equals to Πi∈[n]Ri +
Πi∈[n]Si. 2

Now the proof of Theorem 2 is complete. 2

5. CONCLUSION
We proposed two applications of multilinear maps, GKE

and witness encryption. The communication structure of
these schemes are both formed like that some pre-specified
number of points are connected by communication lines, and
these schemes share a common mechanism. The mechanism
is that, each point has a secret level-0 encoding and its level-
1 encodings are piled up in a product one by one along the
lines. Eventually a specified level encoding is generated, and
a deterministic value is extracted from the encoding.
The security of our GKE scheme is based on GDDH as-

sumption. Each party generates a level-(N-1) encoding, in
its source encodings only its own encoding is level-0 and

others are level-1, and extracts a same group key from that.
The piling encodings mechanism is useful in some cases to
reduce a lot of traffic in the one-round GKE or existing GKE
that does not use multilinear maps. In our witness encryp-
tion scheme, we expressed Hamilton Cycle, that visits each
vertex in the graph exactly once, using this piling encodings
mechanism. We proved its soundness security based on our
Generic Cyclic Colored Matrix Model.

6. REFERENCES
[BCPQ] E. Bresson, O. Chevassut, D. Pointcheval, and J.

J. Quisquater. Provably authenticated group
diffie-hellman key exchange. In proceedings of 8th
ACM Conference on CCS E., pages 255-264, 2001.

[BS03] Dan Boneh and Alice Silverberg. Applications of
multilinear forms to cryptography. In Contemporary
Mathematics 324, pages 71-90, 2003.

[CLT13] Jean-S é bastien Coron, Tancr è de Lepoint,
Mehdi Tibouchi. Practical Multilinear Maps over the
Integers. In CRYPTO 2013, pages 476-493.

[GGH13] Sanjam Garg, Craig Gentry, and Shai Halevi.
Candidate multilinear maps from ideal lattices and
applications. In EUROCRYPT 2013, Lecture Notes in
Computer Science. Springer, 2013. Cryptology ePrint
Archive, Report 2012/610.

[GGH13+] Sanjam Garg, Craig Gentry, Shai Halevi,
Mariana Raykova, Amit Sahai, Brent Waters.
Candidate Indistinguishability Obfuscation and
Functional Encryption for all Circuits. In FOCS 2013,
pages 40-49.

[GGHSW13] Sanjam Garg, Craig Gentry, Shai Halevi,
Amit Sahai, and Brent Waters. Attributebased
encryption for circuits from multilinear maps. In
Cryptology ePrint Archive, Report 2013/128, 2013.

[GGSW] Sanjam Garg, Craig Gentry, Amit Sahai and
Brent Waters. Witness Encryption and its
Applications. In STOC, pages 467-476, 2013.

[Kil88] Joe Kilian. Founding cryptography on oblivious
transfer. In Janos Simon, editor, In STOC, pages
20-31. ACM, 1988.

[S80] T.Schwartz. Fast probabilistic algorithms for
verification of polynomial identities. In Journal of the
ACM 27: pages 701 ‒ 717, 1980.

[Shoup] V. Shoup. Sequences of Games: A Tool for
Taming Complexity in Security Proofs. In Cryptology
ePrint Archive, Report 2004/332, 2004.

[STW96] M. Steiner, G. Tsudik, and M. Waidner.
Diffie-Hellman Key Distribution Extended to Group
Communication. In Proceedings of the 3rd ACM
Conference on Computer and Communications
Security, pages 31-37. ACM Press, 1996.

[Z79] R. Zippel. Probabilistic algorithms for sparse
polyno-mials. In Proceedings of EUROSAM, Springer
Lecture Notes in Computer Science Vol.72, pages 216
‒ 226, 1979.

22

