

博士論文

Automated Detection System for Adversarial Examples

on Images with Image Transformation and Filters

画像のフィルタリングと変換を用いた

敵対例攻撃の自動検出システム

情報セキュリティ大学院大学

情報セキュリティ研究科

情報セキュリティ専攻

5674101 DANG DUY THANG

指導教員 松井俊浩

2020 年 3 月

Automated Detection System for Adversarial

Examples on Images with Image Transformation and

Filtering

画像のフィルタリングと変換を用いた敵対例攻撃の自動

検出システム

by

Dang Duy Thang

Submitted to the Institute of Information Security

in fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

at

THE INSTITUTE OF INFORMATION SECURITY

March 2020

c○The Institute of Information Security, Yokohama, Japan

Author .

Institute of Information Security

March, 2020

Certified by. .

Toshihiro Matsui

Professor

Thesis Supervisor

Accepted by .

Atsuhiro Goto

Chairman, The Institute of Information Security

2

Doctoral Dissertation

Automated Detection System for Adversarial

Examples on Images with Image Transformation and

Filtering

画像のフィルタリングと変換を用いた敵対例攻撃の自動

検出システム

by

Dang Duy Thang

Submitted to the Institute of Information Security
on March, 2020, in fulfillment of the

requirements for the degree of
DOCTOR OF PHILOSOPHY

Abstract

Deep neural networks has been applied in many task with encouraging results and
reached human-level performance. These models that make predictions by learning
from the training data. In this context, accuracy prediction denotes the fraction of
test inputs that a model processes correctly the proportion of images that an object
recognition algorithm recognizes as belonging to the correct class, and the proportion
of executables that a malware detector correctly designates as benign or malicious.
The estimate of a model’s accuracy varies greatly with the choice of the dataset used
to compute the estimate. The model’s accuracy is generally evaluated on test inputs
that were not used during the training process. The accuracy is usually higher if the
test inputs resemble the training images more closely. For example, a image classifi-
cation system trained carefully on images may obtain high accuracy when tested on
other images in the same distribution. Machine learning has traditionally been devel-
oped following the assumption that the environment is benign during both training
and evaluation of the model. Specifically, the inputs are usually assumed to all be
drawn independently from the same probability distribution at both training and test
time. This means that while test inputs are new and previously unseen during the
training process, they at least have the same statistical properties as the inputs used
for training. Such assumptions have been useful for designing effective machine learn-

3

ing algorithms but implicitly rule out the possibility that an adversary could alter the
distribution at either training time or test time. However, deep neural networks have
been recently found vulnerable to well-designed input samples that called adversarial
examples. Such an issue causes deep neural networks to misclassify adversarial ex-
amples that are imperceptible to humans. Because of these major security issues of
adversarial examples, our research is focusing on how to make the AI system more se-
cure, able to identify and distinguish between adversarial and legitimate images. Our
research mainly investigates building detection and distinguishing between adversar-
ial examples and legitimate images in image classification tasks. In this research, we
propose the-state-of-the-art detection systems for automatically detecting adversarial
examples on deep neural networks by using affine transformation and image filter-
ing. Our proposed systems can perfectly distinguish adversarial samples and benign
images in an end-to-end manner without human intervention. We exploited the im-
portant role of image transformation and filters in adversarial samples and proposing
state-of-the-art methods for detecting malicious samples based on our observations.
We evaluated our methods on a variety of standard benchmark datasets including
MNIST and ImageNet. Our methods reached out to detection rates in a range from
93.2% to 100% in many settings. Besides, we proposed a new idea to evaluate the
robustness of the AI system against adversarial examples. Evaluating the robustness
of AI systems is very important because of raising adversarial attacks. This idea is
also discussed in this thesis.

Thesis Supervisor: Toshihiro Matsui
Title: Professor

4

Acknowledgments

This thesis would have been impossible without the support and mentoring of my

advisor, Professor Toshihiro Matsui. Even after three years of working with him, I am

constantly surprised by his amazing intelligence, infinite energy, boundless optimism,

and genuine friendliness. I wish I could incorporate more of his qualities. Professor

Matsui highlighted fully security on machine learning as an interesting open problem

and especially adversarial examples is a subject undergoing intense study around the

world at the first our meeting three years ago. I am inspired by his explanation and

discussion very much. Afterward, I received that I am really interested in this research

area. He also frequently pushed and corrected my English. I have also received a

lot of fruitful comments and supports from my labmates Jun Fukuyama, Takumi

Iwaki, Hidehito Kobayashi, Masatoshi Ogawa, Taisei Kondō and Kazuyuki Ishii in

the Matsui’s laboratory. I really appreciated Professor Akira Otsuka for his helpful

comments in every presentation. I would not have the chance to study and settled

down in Japan without enthusiasm support from Professor Atsuhiro Goto, Professor

Hidehiko Tanaka, Professor Harumichi Yuasa, and Ms. Miwako Yamaguchi. I also

would like to express my gratitude to my parents Dang Duy Quyet and Tran Thi

Kim Thanh, my wife Nguyen Thi Quynh Trang, my son Dang Duy Nhat Minh and

another my beloved family members. I can not imagine what will happen without

their help and support. This work was supported by the Iwasaki Tomomi scholarship.

5

6

Contents

1 Introduction and Background 17

1.1 Introduction . 17

1.2 Background . 19

1.2.1 Image Classification . 19

1.2.2 Linear Classification . 20

1.2.3 Optimization Algorithms . 21

1.2.4 Convolutional Neural Networks 24

2 Literature Review on Adversarial Examples 29

2.1 A taxonomy of Adversarial Attacks 29

2.1.1 Targeted/Non-targeted Attacks 30

2.1.2 White-box/Black-box Attacks 30

2.1.3 Poisoning Attack vs Evasion Attack 34

2.1.4 Physical Attacks . 35

2.1.5 Classification-based Attacks 37

2.1.6 Miscellaneous Attacks on other Domain 39

2.1.7 Summary on Adversarial Attacks 42

2.2 Defense Strategies to Adversarial Examples 43

2.2.1 Adversarial Training . 43

2.2.2 Gradient Masking . 43

2.2.3 Image Compression . 44

2.2.4 Image Denoising . 45

2.2.5 Image Transformation . 45

7

2.2.6 Miscellaneous countermeasures 46

2.2.7 Summary on Adversarial Defense 48

3 Proposed Automatic Detection System for Adversarial Examples 51

3.1 Image Transformation for Detecting Adversarial Examples 51

3.1.1 Crafting Adversarial Examples Phase 52

3.1.2 Coordinate Transformation . 53

3.1.3 Geometric Translation and Combination 58

3.1.4 Proposed Defending Method 60

3.1.5 Experimental setup . 61

3.1.6 Results . 64

3.1.7 Summary for Image Transformation for Detecting Adversarial

Examples . 69

3.2 Image Filters for Detecting Adversarial Examples 71

3.2.1 Detection phase . 72

3.2.2 Datasets . 75

3.2.3 Implementation . 76

3.2.4 Results . 77

3.2.5 Summary for Denoising Detection System 80

3.3 Geometric Transformation and Denoiser for identifying Adversarial Ex-

amples . 81

3.3.1 Evaluation Metrics . 85

3.3.2 Implementation and Settings 85

3.3.3 Results . 87

3.3.4 Summary for combination of Image Transformation and Filters 96

3.4 Evaluating the robustness of adversarial perturbation against Image

Filters . 98

3.4.1 Search Space on Attacking Phase 98

3.4.2 Implementation . 100

3.4.3 Results . 101

8

3.4.4 Summary for Evaluating the robustness of adversarial pertur-

bation against Image Filters 105

4 Conclusion and Future Works 111

4.1 Conclusion . 111

4.2 Future Works . 113

A Figures 115

9

10

List of Figures

1-1 Inception V3 [108] - one of deep convolutional neural networks 25

2-1 Example of the adversarial attack on mobile phone cameras: A clean

image (a) was taken and used to generate different adversarial images.

The images were printed and the TensorFlow Camera Demo app was

used to classify them. A clean image (b) is recognized correctly as

a “washer” when perceived through the camera, whereas adversarial

images (c) and (d) are misclassified. The images also show network

confidence in the range [0,1] for each image. 36

2-2 Example of road sign attack [24]: The success rate of fooling LISA-

CNN classifier on all the shown images is 100%. The distance and

angle to the camera are also shown. The classifier is trained using

LISA dataset for road signs [78]. 37

3-1 Coordinate Transformation with 20 degree counterclockwise rotation

around the center . 54

3-2 Geometric Translation with 20 degree from top-lelf corner 59

3-3 Combination of Coordinate Transformation and Geometric Transla-

tion.First, we shift image from top-left to bottom-right with 20 degree.

Then, we rotate image with 20 degree counterclock wise from center of

image . 60

3-4 Our automated detection system for adversarial examples by using

image filters . 72

3-5 Attack Phase Samples. 77

11

3-6 Adversarial ostrich image (true class: Oscilloscope) suffers to our sieve

process . 78

3-7 Adversarial Examples Identification System 83

3-8 An example: Attack phase by using FGSM, PGD, CW_L2 and EAD

methods with targeted 𝑜𝑠𝑡𝑟𝑖𝑐ℎ label 87

3-9 Our proposed Model 1 defeats the adversarial perturbation’s affect . . 89

3-10 Observation on the probabilities of the ground truth label with GT&R

method . 90

3-11 Observation on the probabilities of the targeted label with GT&Rmethod 91

3-12 Our proposed Model 1 regain the true recognition 92

3-13 Adversarial examples suffers to our first proposed model (LIMG +

LIMM) . 93

3-14 Our observation on original 𝑜𝑠𝑐𝑖𝑙𝑙𝑜𝑠𝑐𝑜𝑝𝑒 image and adversarial 𝑜𝑠𝑡𝑟𝑖𝑐ℎ

images that created by FGSM [31], PGD [70], CW_𝐿2 [14], and EAD [16]

methods and when we use LIMG and LIMM method. First row, per-

centage values illustrate classification rates for the ground truth label.

Other rows, percentage values are classification rates for the targeted

label. 94

3-15 Classification Results on Oscilloscope Image with observation on the

probabilities of Original Label . 102

3-16 Classification Results on Oscilloscope Image with observation on the

probabilities of Adversarial Label . 102

3-17 Classification Results on Vending Machine Image with observation on

the probabilities of Original Label . 103

3-18 Classification Results on Vending Machine Image with observation on

the probabilities of Adversarial Label 103

3-19 Classification Results on Keyboard and Computer Mouse Images . . . 104

3-20 Adversarial Oscilloscope (targeted class: Ostrich Sign) 105

3-21 Original Oscilloscope with Image Filters 106

12

3-22 Adversarial FGSM L1 Oscilloscope (targeted class: Ostrich) with Im-

age Filters . 107

3-23 Adversarial FGSM L2 Oscilloscope (targeted class: Ostrich) with Im-

age Filters . 108

3-24 Adversarial FGSM L∞ Oscilloscope (targeted class: Ostrich) with Im-

age Filters . 109

A-1 Coordinate transformation - Geometric translation on the Adversarial

images (“Keyboard”, “C-Mouse”, “V-Machine”). 115

A-2 MNIST - Coordinate Transformation with 𝛼 ∈ [0, 30]. Index num-

bers identify the index of images in MNIST training dataset. The fig-

ure illustrates the adversarial perturbation is defeated by Coordinate

Transformation in all experiments. 116

13

14

List of Tables

3.1 Google Inception Architecture [108] 63

3.2 LeNet architecture [56] . 64

3.3 Geometric Translation results on our own images 65

3.4 Coordinate Transformation results on our own images 65

3.5 Combination results on our own images 67

3.6 Summary performance on our own images 68

3.7 Summary performance on ImageNet dataset 68

3.8 Summary performance on MNIST . 69

3.9 Detection Rate on MNIST dataset 79

3.10 Detection Rate on ImageNet dataset 79

3.11 Detection Rate on MNIST dataset 95

3.12 Detection Rate on ImageNet dataset 96

3.13 Implementation Results . 107

15

16

Chapter 1

Introduction and Background

1.1 Introduction

The rapid increase in large amounts of data processing and automation has been

partly satisfied by the outstanding development of deep learning models or some-

times mentioned as deep neural networks (DNNs). Deep learning has been applied

to many challenges and achieve very impressive results in big data [121], computer

vision [115], natural language processing [8, 40], speech recognition [39], and play-

ing games [103]. Because of its high performance, deep learning is also being widely

applied to systems requiring high safety such as self-driving cars [46], surveillance

systems based on facial recognition [41], gestures [117], and fingerprints [116]. These

systems are being used very widely and continue to grow strongly in the following

years. However, in recent studies, many researchers [109, 31, 10] have found the se-

curity risks associated with deep learning systems. One of the typical examples that

can be considered is the safety of the self-driving car system based on automatic im-

age processing features. What if the camera system on self-driving cars misidentified

the "STOP" sign to the "SPEED UP" sign. Another example, the security system

misidentifies a stranger’s face as a company employee, and the fact that strangers can

gain access to a successful agency through a camera system has been deceived. This is

one of the security issues that are very challenging for systems based on deep learning.

Typical of these risks is adversarial examples. This is a concept that is considered

17

to be first mentioned in the study of Szegedy et al. [109]. Adversarial examples can

be interpreted as a very elaborate form of data that makes it impossible for humans

to recognize the difference from the original data, but it causes deep learning models

to make a completely wrong recognition. Adversarial examples not only affect the

scope of image classification [31], but can also impact other fields such as natural

language processing [60], speech recognition [15], malware detection [34] and object

detection [112]. In the field of natural language processing, many recent studies on

adversarial examples have been also proposed. Bin Liang et al [60] proposed a new

attack method based on the Hot Training Phrases (HTP) to deceive a deep learning

system. Ji Gao et al. [27] used two main steps for evading a target deep learning

classifier. The first step is to determine the most important tokens to modify, and

the second step is to change slightly the important words before fooling a target deep

learning system. In the speech recognition field, Nicholas Carnili et al. [15] introduced

an audio adversarial attack method that targeted to DeepSpeech [37], a state-of-the-

art speech-to-text transcription system. Rohan Taori et al. [111] combined genetic

algorithm and gradient method to create a black-box audio adversarial example that

attacked to an automatic speech recognition (ASR) system. In Malware detection,

Kathrin Grosse et al. [34] adopted the adversarial attack method based on the ja-

cobian matrix to craft adversarial samples by using the DREBIN Android malware

dataset [6] to fool a malware classifier. In image classification, adversarial examples

garnered the most attention with tremendous research [3] on offensive and defensive

methods.

To deal with the rising risks of adversarial examples, there are many studies have

been proposed with the aim to detect or defeat adversarial examples and protect a

deep learning system. Papernot et al. [87] invented a defensive method called de-

fensive distillation to remove the effectiveness of adversarial samples on deep neural

networks. Buckman et al. [12] proposed a new modification strategy to neural network

architectures that make it more robustness against adversarial examples. Guneet et

al. [20] introduced the stochastic activation pruning strategy for adversarial defense,

this method is based on the game theory to minimize the zero-sum game between

18

the adversary and the model. However, there is still no perfect defensive method for

adversarial examples and previous defensive methods demand many fine-tuning and

intervention from a human. For solving these disadvantages of previous defensive

algorithms, we proposed a state-of-the-art detection system that can automatically

distinguish adversarial and benign images. Our defense strategies for defeating adver-

sarial examples are based on image transformation and image filters that our research

focus on this direction so we will review and discuss more related research works in

the Chapter 3.

1.2 Background

Adversarial examples are affected not only in image processing, but also in many

other research fields such as natural language processing, audio/speech processing,

malware detection. But in our research direction, we only focus on image processing,

especially image classification with adversarial examples. So we concentrate on image

classification and it will be as default task throughout this thesis.

1.2.1 Image Classification

In this section we will introduce an Image Classification problem, which is a task

of assigning an input image one label from a fixed set of categories. This is one of

the core problems in Computer Vision that, despite its simplicity, has a large variety

of practical applications. Moreover, as we will see later in the section, many other

seemingly distinct Computer Vision tasks (such as object detection, segmentation)

can be reduced to image classification. Neural networks consist of elementary com-

puting units named neurons organized in interconnected layers. Each neuron applies

an activation function to its input to produce an output. Let’s start with the input

of a machine learning model, in which each network layer produces an output used

as input by the next layer. Networks with a single intermediate hidden layer are

qualified as shallow neural networks, whereas models with multiple hidden layers are

deep neural networks. Using of multiple hidden layers is interpreted as hierarchically

19

extracting representations from the input, eventually producing a representation rel-

evant to solve the machine learning task and output a prediction. A neural network

model F can be formalized as the composition of multidimensional and parametrized

functions 𝑓𝑖 each corresponding to a layer of the network architecture and a repre-

sentation of the input, where each vector 𝑖 parametrizes layer i of the network F and

includes weights for the links connecting layer i to layer 𝑖1. A set of model parame-

ters = 𝑖 is learned during training. For instance, in a supervised learning manner,

parameter values are learned by computing prediction errors 𝑓(𝑥)− 𝑦 on a collection

of known input output pairs (𝑥, 𝑦).

1.2.2 Linear Classification

We are now going to develop a more powerful approach to image classification that we

will eventually naturally extend to entire Neural Networks and Convolutional Neural

Networks. The approach will have two major components: a score function that

maps the raw data to class scores, and a loss function that quantifies the agreement

between the predicted scores and the ground truth labels. We will then cast this as

an optimization problem in which we will minimize the loss function with respect to

the parameters of the score function.

Score function

The first component of this approach is to define the score function that maps the pixel

values of an image to confidence scores for each class. We will develop the approach

with a concrete example. Let’s assume a training dataset of images 𝑥𝑖 ∈ 𝑅𝐷, each

associated with a label 𝑦𝑖. Here 𝑖=1...N and 𝑦𝑖 ∈ 1..𝐾. That is, we have N examples

(each with a dimensionality D) and K distinct categories. For examples, in MNIST

dataset, we have a training set of N=50,000 images, each with D=28×28×1=784

pixels, and K=10, since there are 10 distinct classes (digit 0, 1, ..., 9). We will now

define the score function 𝑓 : 𝑅𝐷 ↦→ 𝑅𝐾 that maps the raw image pixels to class

scores. Let consider the simplest possible linear classifier function, a linear mapping:

20

𝑓(𝑥𝑖,𝑊, 𝑏) = 𝑊𝑥𝑖 + 𝑏. We assume that the image 𝑥𝑖 has all of its pixels flattened

out to a single column vector of shape [𝐷 × 1]. The matrix 𝑊 (of size[K × D]), and

the vector b (of size [K × 1]) are the parameters of the function. The parameters in

W are often called the weights, and b is called the bias vector because it influences

the output scores, but without interacting with the actual data 𝑥𝑖. However, you will

often hear people use the terms weights and papameters interchaneably.

Loss function

In the context of an optimization algorithm, the function used to evaluate a candidate

solution (i.e. a set of weights) is referred to as the objective function. We may seek

to maximize or minimize the objective function, meaning that we are searching for a

candidate solution that has the highest or lowest score respectively. Typically, with

neural networks, we seek to minimize the error. As such, the objective function is

often referred to as a cost function or a loss function and the value calculated by the

loss function is referred to as simply “loss”.

1.2.3 Optimization Algorithms

Optimization is the process of finding the set of parametersW that minimize the loss

function.

Random Search

Since it is so simple to check how good a given set of parameters W is, the first idea

that may come to mind is to simply try out many different random weights and keep

track of what works best. The core idea is that finding the best set of weights W is

a very difficult or even impossible problem (especillay once W contains weights for

entire complex neural networks), but the problem of refining a specific set of weights

W to be slightly better is significantly less difficult. In other words, our approach

will be to start with a random W and then iteratively refine it, making it slightly

better each time.

21

Gradient

We can compute the best direction along which we should change our weight vector

that is mathematically guaranteed to be the direction of the steepest descend (at

least in the limit as the step size goes towards zero). This direction will be related to

the gradient of the loss function. In our hiking analogy, this approach roughtly corre-

sponds to feeling the slope of the hill below our feet and stepping down the direction

that feels steepest. In one-dimensional functions, the slope is the instantaneous rate

of change of the function at any point you might be interested in. The gradient is

a generalization of slope for functions that don’t take a single number but a vector

of numbers. Additionally, the gradient is just a vector of slopes (more commonly

referred to as derivatives) for each dimension in the input space. The mathematical

expression for the derivative of a 1-D function with respect its input is:

𝑑𝑓(𝑥)

𝑑𝑥
= lim

ℎ→0

𝑓(𝑥 + ℎ)− 𝑓)𝑥

ℎ
(1.1)

When the function of interest take a vector of numbers instead of a single number,

we call the derivatives partial derivatives, and the gradient is simple the vector of

partial derivatives in each dimension. There are two ways to compute the gradient:

A slow, approximate but easy way (numerical gradient), and a fast, exact but more

error-prone way that requires calculus (analytic gradient). The numerical gradient is

very simple to compute using the finite difference approximation, but the downside is

that it is approximate (since we have to pick a small value of h, while the true gradient

is defined as the limit as h goes to zero), and that it is very computationally expensive

to compute. The second way to compute the gradient is analytically using Calculus,

which allows us to derive a direct formula for the gradient (no approximations) that

is also very fast to compute. However, unlike the numerical gradient it can be more

error prone to implement, which is why in practice it is very common to compute the

analytic gradient and compare it to the numerical gradient to check the correctness

of your implementation. This is called a gradient check. Lets use the example of the

SVM loss function for a single datapoint: 𝐿𝑖 =
∑︀

𝑗 ̸=𝑦𝑖
[max(0, 𝑤𝑇

𝑗 𝑥𝑖−𝑤𝑇
𝑦𝑖
𝑥𝑖 + ∆)]. We

22

can differentiate the function with respect to the weights. For example, taking the gra-

dient with respect to 𝑤𝑦𝑖 we obtain:▽𝑤𝑦𝑖
𝐿𝑖 = −

(︁∑︀
𝑗 ̸=𝑦𝑖

1(𝑤𝑇
𝑗 𝑥𝑖 − 𝑤𝑇

𝑦𝑖
𝑥𝑖 + ∆ > 0)

)︁
𝑥𝑖,

where 1 is the indicator function that is one if the condition inside is true or zero

otherwise. While the expression may look scary when it is written out, when you’

re implementing this in code you would simply count the number of classes that did

not meet the desired margin (and hence contributed to the loss function) and then

the data vector 𝑥𝑖 scaled by this number is the gradient. Notice that this is the

gradient only with respect to the row of 𝑊 that corresponds to the correct class. For

the other rows where 𝑗 ̸= 𝑦𝑖 the gradient is: ▽𝑤𝑦𝑖
𝐿𝑖 = 1(𝑤𝑇

𝑗 𝑥𝑖 − 𝑤𝑇
𝑦𝑖
𝑥𝑖 + ∆ > 0)𝑥𝑖.

Once you derive the expression for the gradient it is straight-forward to implement

the expressions and use them to perform the gradient update.

Gradient Descent Now that we can compute the gradient of the loss function,

the procedure of repeatedly evaluating the gradient and then performing a parameter

update is called Gradient Descent. Mini-batch gradient descent, in large-scale

applications (such as the ILSVRC challenge), the training data can have on order

of millions of examples. Hence, it seems wasteful to compute the full loss function

over the entire training set in order to perform only a single parameter update. A

very common approach to addressing this challenge is to compute the gradient over

batches of the training data. For example, in current state of the art Convolutional

Neural Network, a typical batch contains 256 examples from the entire training set of

1.2 million. The extreme case of this is a setting where the mini-batch contains only

a single example. This process is called Stochastic Gradient Descent (SGD) (or

also sometimes on-line gradient descent). This is relatively less common to see

because in practice due to vectorized code optimizations it can be computationally

much more efficient to evaluate the gradient for 100 examples, than the gradient for

one example 100 times. Even though SGD technically refers to using a single example

at a time to evaluate the gradient, you will hear people use the term SGD even when

referring to mini-batch gradient descent (i.e. mentions of MGD for “Minibatch

Gradient Descent”, or BGD for “Batch gradient descent” are rare to see),

where it is usually assumed that mini-batches are used. The size of the mini-batch is a

23

hyperparameter but it is not very common to cross-validate it. It is usually based on

memory constraints (if any), or set to some value, e.g. 32, 64 or 128. We use powers

of 2 in practice because many vectorized operation implementations work faster when

their inputs are sized in powers of 2.

1.2.4 Convolutional Neural Networks

Architecture Overview

Convolutional Neural Networks (CNNs) take advantage of the fact that the input

consists of images and they constrain the architecture in a more sensible way. In

particular, unlike a regular Neural Network, the layers of a Convolutional Neural

Network have neurons arranged in 3 dimensions: width, height, depth (note that

the word depth here refers to the third dimension of an activation volume, not to

the depth of a full Neural Network, which can refer to the total number of layers

in a network.) Neural Networks receive an input (a single vector), and transform it

through a series of hidden layers. Each hidden layer is made up of a set of neurons,

where each neuron is fully connected to all neurons in the previous layer, and where

neurons in a single layer function completely independently and do not share any

connections. The last fully-connected layer is called the “output layer” and in

classification settings it represents the class scores.

Layers in CNNs. A simple CNN is a sequence of layers, and every layer of a CNN

transforms one volume of activations to another through a differentiable function.

We use three main types of layers to build CNN architectures: 𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑎𝑙𝐿𝑎𝑦𝑒𝑟,

𝑃𝑜𝑜𝑙𝑖𝑛𝑔𝐿𝑎𝑦𝑒𝑟, and 𝐹𝑢𝑙𝑙𝑦−𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝐿𝑎𝑦𝑒𝑟 (exactly as seen in regular Neural Net-

works). We will stack these layers to form a full CNN architecture.

Convolutional Layer

The Convolutional Neural layer is the core building block of a Convolutional Neu-

ral Network that does most of the computational heavy lifting. Fig. 1-1 shows an

architecture of Inception V3 [108], one of deep convolutional neural networks. Lets

24

Figure 1-1: Inception V3 [108] - one of deep convolutional neural networks

first discuss what the CNN layer computes without brain/neuron analogies. The CNN

layer’s parameters consist of a set of learnable filters. Every filter is small space(along

width and height), but extends through the full depth of the input volume. For ex-

ample, a typical filter on a first layer of a CNN might have size 5×5×3 (i.e. 5 pixels

width and height, and 3 because images have depth 3, the color channels). During

the forward pass, we slide (more precisely, convolve) each filter across the width and

height of the input volume and compute dot products between the entries of the filter

and the input at any position. As we slide the filter over the width and height of the

input volume we will produce a 2-dimensional activation map that gives the responses

of that filter at every spatial position. Intuitively, the network will learn filters that

activate when they see some type of visual feature such as an edge of some orienta-

tion or a blotch of some color on the first layer, or eventually entire honeycomb or

wheel-like patterns on higher layers of the network. Now, we will have an entire set

of filters in each CNN layer (e.g. 12 filters), and each of them will produce a separate

2-dimensional activation map. We will stack these activation maps along the depth

dimension and produce the output volume.

Local Connectivity. When dealing with high-dimensional inputs such as im-

ages, as we saw above it is impractical to connect neurons to all neurons in the

previous volume. Instead, we will connect each neuron to only a local region of the

input volume. The spatial extent of this connectivity is a hyper parameter called the

receptive field of the neuron (equivalently this is the filter size). The extent of the

25

connectivity along the depth axis is always equal to the depth of the input volume.

It is important to emphasize again this asymmetry in how we treat the spatial di-

mensions (width and height) and the depth dimension: The connections are local in

space (along width and height), but always full along the entire depth of the input

volume.

Spatial arrangement. We have explained the connectivity of each neuron in

the Convolutional Neural Layer to the input volume, but we haven’t yet discussed

how many neurons there are in the output volume or how they are arranged. Three

hyperparameters control the size of the output volume: the depth, stride and zero-

padding. We discuss these as bellow:

∙ depth. The depth of the output volume is a hyper parameter: it corresponds to

the number of filters we would like to use, each learning to look for something

different in the input. For example, if the first Convolutional Layer takes

as input the raw image, then different neurons along the depth dimension may

activate in presence of various oriented edges, or blobs of color. We will refer to

a set of neurons that are all looking at the same region of the input as a depth

column.

∙ stride. We must specify the stride with which we slide the filter. When the

stride is 1 then we move the filters one pixel at a time. When the stride is 2 (or

uncommonly 3 or more, though this is rare in practice) then the filters jump

2 pixels at a time as we slide them around. This will produce smaller output

volumes spatially.

∙ zero-padding. Sometimes it will be convenient to pad the input volume with

zeros around the border. The size of this zero-padding is a hyper parameter.

The nice feature of zero padding is that it will allow us to control the spatial

size of the output volumes (most commonly as we will see soon we will use it

to exactly preserve the spatial size of the input volume so the input and output

width and height are the same).

26

Pooling Layer

It is common to periodically insert a Pooling layer in-between successive Convolutional

Neural layers in a Convolutional Neural Network architecture. Its function is to

progressively reduce the spatial size of the representation to reduce the amount of

parameters and computation in the network, and hence to also control overfitting.

The Pooling Layer operates independently on every depth slice of the input and resizes

it spatially, using the MAX operation. The most common form is a pooling layer with

filters of size 2 × 2 applied with a stride of 2 downsamples every depth slice in the

input by 2 along both width and height, discarding 75% of the activations. Every

MAX operation would in this case be taking a max over 4 numbers (little 2×2 region

in some depth slice). The depth dimension remains unchanged. More generally, the

pooling layer:

∙ Accepts a volume of size W1 × H1 ×D1

∙ Requires two hyper parameters: their spatial extent F and the stride S

∙ Produces a volume of size W2 × H2 × D2 where: W2 = (W1 − F/)S + 1, H2 =

(H1 − F/)S + 1 and D2 = D1

∙ Creates zero parameters since it computes a fixed function of the input

∙ For Pooling layers, it is not common to pad the input using zero-padding

It is worth noting that there are only two commonly seen variations of the max

pooling layer found in practice: a pooling layer with F=3, S=2 (also called overlapping

pooling), and more commonly F=2, S=2. Pooling sizes with larger receptive fields

are too destructive.

Normalization Layer

Many types of normalization layers have been proposed for use in CNN architectures,

sometimes with the intentions of implementing inhibition schemes observed in the bi-

ological brain. However, these layers have since fallen out of favor because in practice

their contribution has been shown to be minimal, if any.

27

Fully-connected layer

Neurons in a fully connected (FC) layer have full connections to all activations in

the previous layer, as seen in regular Neural Networks. Their activations can hence

be computed with a matrix multiplication followed by a bias offset. It is worth

noting that the only difference between FC and CNN layers is that the neurons in the

convolutional layer are connected only to a local region in the input, and that many

of the neurons in a convolutional volume share parameters. However, the neurons in

both layers still compute dot products, so their functional form is identical. Therefore,

it turns out that it’s possible to convert between FC and convolutional layers:

∙ For any convolutional layer there is an FC layer that implements the same

forward function. The weight matrix would be a large matrix that is mostly

zero except for at certain blocks (due to local connectivity) where the weights

in many of the blocks are equal (due to parameter sharing).

∙ Conversely, any FC layer can be converted to a convolutional layer. For example,

an FC layer with K=4,096 that is looking at some input volume of size 7×7×512

can be equivalently expressed as a convolutional layer with F=7, P=0, S=1,

K=4,096. In other words, we are setting the filter size to be exactly the size of

the input volume, and hence the output will simply be 1× 1× 4, 096 since only

a single depth column “fits” across the input volume, giving identical result

as the initial FC layer.

Of these two conversions, the ability to convert an FC layer to a convolutional layer is

particularly useful in practice. Consider a CNN architecture that takes a 299×299×3

image, and then uses a series of convolutional layers and POOL layers to reduce the

image to an activations volume of size 7× 7× 512.

28

Chapter 2

Literature Review on Adversarial

Examples

2.1 A taxonomy of Adversarial Attacks

In this section, we will provide a qualitative taxonomy on different terms and keywords

related to adversarial attacks and categorize the threat models. Adversarial examples

are considered as one variant of adversarial machine learning that has been studied

for decades [19]. Adversarial machine learning covers many privacy and security

problems on a machine learning system, such as biometric authentication [54], spam

detection [92], and fraud detection [26]. Adversarial examples [109] is a new type of

adversarial machine learning that is mainly focused on deceiving a machine learning

by slightly modifying legitimate input but unrecognized by a human. A machine

learning system has normally been designed with an assumption that both training

and test datasets are benign during training and evaluating phases. In the training

process, the data distribution is squeezed and only the weights of the model are fine-

tuned by using gradient descent and backpropagation of the gradients to find the

best weights for the input-output pairs (𝑥, 𝑦). The inputs 𝑥 are usually considered to

be sampled independently from the unchanged distribution in the training process.

These assumptions are useful to concentrate on adopting the weights of the machine

learning model. The creation process of adversarial examples is performed in the

29

opposite way. The attackers squeeze the weights of the victim machine learning

model and slightly modify the input data to cause the classifier to misclassify. The

new input data is called adversarial examples. There are many ways to categorize

the adversarial examples attacks and they depend on the adversary purposes or the

amount of knowledge that attackers are able to learn from the victim models.

2.1.1 Targeted/Non-targeted Attacks

Firstly, the adversarial attacks can be categorized by the type of adversary goals.

∙ Non-targeted Attack. In this the case adversary’s goal is to cause the classi-

fier to predict any inccorect label. The specific incorrect label does not matter.

There are several not-targeted attacks [52, 106, 81, 80] that were considered and

investigated.

∙ Targeted Attack. In this case the adversary aims to change the classi-

fier’s prediction to some specific target class. This type of adversarial attack

is attracted by many researchers and there are many proposed targeted at-

tacks [109, 31, 85, 14].

2.1.2 White-box/Black-box Attacks

Second, the adversarial attacks can be categorized by the amount of knowledge the

attackers have about the victim models.

∙ White-box Attacks. In the white box scenario [109, 31, 85, 14, 81, 80, 69, 14],

the adversary has full knowledge of the model including model type, model

architecture and values of all parameters an trainable weights.

∙ Black-box Attacks. There are two type of black-box attacks [106, 84, 64, 43,

1, 14] where attackers have limitation to access into victim models for creating

adversarial examples.

Black box with querying. In this scenario, the adversary does not know

very much about the model, but can query the model, i.e. feed some inputs and

30

observe outputs. There are many variants of this scenario—the adversary may

know the architecture but not the parameters or the adversary may not even

know the architecture, the adversary may be able to observe output probabilities

for each class or the adversary may only be to observe the choice of the most

likely class.

Black box without querying. In the black box without querying scenario,

the adversary has limited or no knowledge about the model under attack and is

not allowed to query the model while constructing adversarial examples. In this

case, the attacker must construct adversarial examples that fool most machine

learning models.

We describe several common adversarial attack methods as below. Note that some

of them can be applied to both White-box and Black-box manners.

L-BFGS. Szegedy et al. [109] used a method name L-BFGS (Limited-memory

Broyden-Fletcher-Goldfarb-Shanno) to create targeted adversarial examples. This

method minimize the weighted sum of perturbation size 𝜀 and loss function 𝐿(𝑥*, 𝑦𝑡𝑎𝑟𝑔𝑒𝑡)

while constraining the elements of 𝑥* to be normal pixel value.

FGSM. Goodfellow et al. [31] assumed that adversarial examples can be caused

by cumulative effects of high dimensional model weights. They proposed a simple

attack method but very effective, called Fast Gradient Sign Method (FGSM):

𝑥* = 𝑥 + 𝜀 · 𝑠𝑖𝑔𝑛(O𝑥𝐿(𝑥, 𝑦)) (2.1)

where 𝜀 denotes the perturbation size for crafting adversarial example 𝑥* from original

input 𝑥. Given a clean image 𝑥, this method tries to create a similar image 𝑥* in

𝐿∞ neighborhood of 𝑥 that fools the target classifier. This leads to maximize loss

function 𝐿(𝑥, 𝑦) which is the cost of classifying image 𝑥 as the target label 𝑦. The fast

gradient sign method solves this problem by performing a one-step gradient update

from 𝑥 in the input space with a small size of perturbation 𝜀. Increasing 𝜀 will lead

to a higher and faster attack success rate however it may also make your adversarial

sample to be more different from the original input. FGSM computes the gradients

31

for once, so it is much more efficient than L-BFGS. This method is very simple but

it is fast and powerful for creating the adversarial examples.

PGD. Madry et al. [69] proposed Projected Gradient Descent (PGD) attack:

𝑥* = 𝑥 + 𝛿 · (▽𝐿 (𝑥, 𝑦)) respect to project(𝑥,𝜖)(𝑥
*) (2.2)

Where project(𝑥,𝜖)(𝑥*) defines a projection operator with parameter 𝑥* on the circle

area around 𝑥 with radius 𝜖, 𝛿 is a clip value that is searched in a box (𝑥, 𝜖). This

method based on another method named Basic Iterative Method (BIM) [52] that is

extended from the FGSM by applying it multiple times with a small step size and

clipping values of intermediate results after each step to ensure that they are in an 𝜖-

neighborhood of the original input. The adversarial examples and their counterparts

are defined as indistinguishable by humans. Because it is hard to model human

perception, researchers use three popular distance metrics to approximate human’s

perception based on the 𝐿𝑝 norm:

||𝑥||𝑝 =

(︂ 𝑛∑︁
𝑖=1

|𝑥𝑖|𝑝
)︂ 1

𝑝

(2.3)

C&W. Carnili et al. [14] proposed a very powerful attack method by using

𝐿0, 𝐿2, 𝐿∞ metrics to control adversarial perturbation. 𝐿0 helps to calculate the

number of pixels with different values at corresponding positions in two images. It

indicates how many pixels between the two images are modified. 𝐿2 is applied for

measuring the Euclidean distance between two images. And 𝐿∞ will help to measure

the maximum difference for all pixels at corresponding positions in two images. So far

it is unclear which one is the best distance metric for crafting adversarial examples

because it depends on the proposed algorithms.

EAD:Elastic-Net Attack. EAD adversarial attack was invented by Pin-Yu

Chen et al. [16] inspired from [14]. This paper uses elastic-net regularization tech-

nique [124] that is widely used in solving high-dimensional feature selection problems

to invent new attack method by extending from C&W method.

32

Deep Fool. Moosavi-Dezfooli et al. [81] proposed an attack method to compute

a minimal norm adversarial perturbation for a given image in an iterative manner.

Their algorithm, i.e. DeepFool initializes with the clean image that is assumed to

reside in a region confined by the decision boundaries of the classifier. This region

decides the class-label of the image. At each iteration, the algorithm perturbs the

image by a small vector that is computed to take the resulting image to the boundary

of the polyhedron that is obtained by linearizing the boundaries of the region within

which the image resides. The perturbations added to the image in each iteration are

accumulated to compute the final perturbation once the perturbed image changes

its label according to the original decision boundaries of the networks. The authors

show that the DeepFool algorithm is able to compute perturbations that are smaller

than the perturbations computed by FGSM [31] in terms of their norm while having

similar fooling ratios.

One-pixel Attack. [106] proposed a new method when only one pixel in the

image is changed to fool the classifier. The method successfully deceives three different

network models on 70.97% of the tested images by changing just on a pixel per image.

They also reported that the average confidence of the networks on the wrong labels

was found to be 97.47%. For a clean image, they first created a set of 400 vectors in

𝑅5 such that each vector contained xy-coordinates and RGB values for an arbitrary

candidate pixel. They, they randomly modified the elements of the vectors to create

children such that a child competes with its parent for fitness in the next iteration,

while the probabilistic predicted label of the network is used as the fitness criterion.

The last surviving feature is used to alter the pixel in the image.

Universal Attack. Whereas the methods like FGSM [31], ILCM [52], Deep-

Fool [81] etc. compute perturbations to fool a network on a single image, the ’univer-

sal’ adversarial perturbations computed by Moosavi-Dezfooli et al. [80] are able to fool

a network on ’any’ image with high probability. These image gnostic perturbations

also remain quasi-imperceptible for the human vision system. The authors computed

the universal perturbations by restricting their 𝑙2 norm as well as 𝑙∞ norm and showed

that the perturbations with their norms already achieved significant fooling ratios of

33

around 0.8 or more for state-of-the-art image classifiers. Their iterative approach to

compute a perturbation is related to the DeepFool [81] strategy of gradually pushing

a data point to the decision boundary for its class. However, in that case, ’all’ the

training data points are sequentially pushed to the respective decision boundaries

and the perturbations computed over all the images are gradually accumulated by

back-projecting the accumulator to the desired 𝑙𝑝 ball of radius 𝜖 every time.

Spatially Transformed Attack. Traditional adversarial attack algorithms di-

rectly modify the pixel value of an image, which changes the image’s color intensity.

Xiao et al. [118] proposed a new method called Spatially Transformed Attack. They

perturb the image by doing slight spatial transformation: they translate, rotate and

distort the local image features slightly. The perturbation is small enough to evade

human inspection but it can fool the classifiers.

Jacobian-Based Saliency Map Attack. Papernot et al. [85] proposed an

attack method based on Jacobian call Jacobian-Based Saliency Map Attack. That

method calculates the Jacobian matrix of the score function 𝐹 . It can be viewed

as a greedy attack algorithm by iterative manipulating the pixel which is the most

influential to the model output.

2.1.3 Poisoning Attack vs Evasion Attack

Third, the adversarial attacks can be classified by the adversary’s goal. Adversaries

with no access to the pre-processed data must instead poison the model’s training

data before its pre-processing. For instance, Perdisci et al. [82] prevented Polygraph,

a worm signature generation tool, from learning meaningful signatures by inserting

perturbations in worm traffic flows [88]. Polygraph combines a flow tokenizer to-

gether with a classifier that determines whether a flow should be in the signature.

Polymorphic worms are crafted with noisy traffic flows such that (1) their tokenized

representations will share tokens, not representative of the worm’s traffic flow, and

(2) they modify the classifier’s threshold for using a signature to flag worms. This

attack forces Polygraph to generate signatures with tokens that do not correspond

to invariants of the worm’s behavior. Later, Xiao et al. [119] adapted the gradient

34

ascent strategy introduced in feature selection algorithms like LASSO.

∙ Poisoning Attacks. The attacking algorithms [11, 48, 98] that allow an at-

tacker to insert/modify several fake samples into the training dataset of a deep

learning system. These fake samples can cause failures of the trained classifier.

They can result in poor accuracy or wrong prediction [125] on some given test

samples. This type of attacks frequently appears in the situation where the

adversary has access to the training database. For example, web-based repos-

itories and "honeypots" [105] often collect malware examples [35] for training,

which provides an opportunity for adversaries to poison the data.

∙ Evasion Attacks. The classifiers are fixed and usually have a good perfor-

mance on benign testing samples [10]. The adversaries do not have the author-

ity to change the classifier or its parameters, but they craft some fake samples

that the classifier cannot recognize. In other words, the adversaries generate

some fraudulent examples to evade detection by the classifier. For example,

in [24], in autonomous driving vehicles, sticking a few pieces of tapes on the

stop signs can confuse the vehicles’s road sign recognizer.

2.1.4 Physical Attacks

In the case of an attack in the physical world, the adversary does not have direct

access to the digital representation provided to the model. Instead, the model is fed

input obtained by sensors such as a camera or microphone. The adversary is able

to place objects in the physical environment seen by the camera or produce sounds

heard by the microphone. The exact digital representation obtained by the sensors

will change based on factors like the camera angle, the distance to the microphone,

ambient light or sound in the environment, etc. This means the attacker has less

precise control over the input provided to the machine learning model.

Attack via Camera Phone. Kurakin et al. [52] first demonstrated that threats

of adversarial attacks also exist in the physical world. To illustrate this (see Fig. 2-1),

they printed adversarial images and took snapshots from a cell-phone camera. These

35

images were fed to the Tensor-Flow Camera Demo app that uses Google’s Inception

model [108] for object classification. It was shown that a large fraction of images were

misclassified even when perceived through the camera. This work studies FGSM [31]

and ILCM [52] attack methods for attacks in the physical world.

Figure 2-1: Example of the adversarial attack on mobile phone cameras: A clean
image (a) was taken and used to generate different adversarial images. The images
were printed and the TensorFlow Camera Demo app was used to classify them. A
clean image (b) is recognized correctly as a “washer” when perceived through the
camera, whereas adversarial images (c) and (d) are misclassified. The images also
show network confidence in the range [0,1] for each image.

Attack to Road Sign. Eykholt Kevin et al. [24] built on the attacks pro-

posed in [14] and [64] to design robust perturbations for the physical world. They

demonstrated the possibility of attacks that are robust to physical conditions, such as

variation in view angles, distance, and resolution. The proposed algorithm, termed

𝑅𝑃2 for Robust Physical Perturbations, was used to generate adversarial examples

for road sign recognition systems that achieved high fooling ratios in practical drive-

by settings. Two attack classes were introduced in this work for the physical road

signs, (a) poster-printing: where the attacker prints a perturbed road sign poster and

places it over the real sign (see Fig. 2-2), (b) sticker perturbation: where the print-

ing is done on a paper and the paper is stuck over the real sign. For (b) two types

of perturbations were studied, (b1) subtle perturbations: that occupied the entire

36

sign and (b2) camouflage perturbations: that took the form of graffiti sticker on the

sign. As such, all these perturbations require access to a color printer and no other

special hardware. Successful generation of perturbations for both (a) and (b) such

that the perturbations remained robust to natural variations in the physical world

demonstrate the threat of adversarial example in the real world.

Figure 2-2: Example of road sign attack [24]: The success rate of fooling LISA-CNN
classifier on all the shown images is 100%. The distance and angle to the camera are
also shown. The classifier is trained using LISA dataset for road signs [78].

2.1.5 Classification-based Attacks

Adversarial attacks are also categorized by the targeted classification/recognition

tasks.

Attack on Recurrent neural networks

Papernot et al. [86] successfully generated adversarial input sequences for Recurrent

Neural Networks (RNNs). RNNs are deep learning models that are particularly suit-

able for learning mappings between sequential inputs and outputs. Papernot et al.

demonstrated that the algorithms proposed to compute adversarial examples for the

feed-forward neural networks can also be adapted for fooling RNNs. In particular,

the authors demonstrated successful fooling of the popular Long short-term memory

(LSTM) [40] RNN architecture. It is concluded that the cyclic neural network model

like RNNs are also not immune to the adversarial perturbations that were originally

uncovered in the context of acyclic neural networks.

37

Attack on Deep Reinforcement Learning

Lin et al. [63] proposed two different adversarial attacks for the agents trained by deep

reinforcement learning [77]. In the first attack, called ’strategically-timed attack’, the

adversary minimizes the reward of the agent by attacking it at a small subset of

time steps in an episode. A method is proposed to determine when an adversarial

example should be crafted and applied, which enables the attack to go undetected. In

the second attack, referred as ’enchanting attack’, the adversary lures the agent to a

designated target state by integrating a generative model and a planning algorithm.

The generative model is used for predicting the future states of the agent, whereas

the planning algorithm generates the actions for alluring it.

Attack on Autoencoders and generative models

Tabacof et al. [110] proposed an adversarial attack for autoencoders [89], that misleads

the autoencoder to reconstruct a completely different image. Their approach attacks

the internal representation of a neural network such that the representation for the

adversarial image becomes similar to that of the target image. However, [110] reported

that autoencoders seem to be much more robust to adversarial attacks than the typical

classifier networks. Kos et al. [50] also explored methods for computing adversarial

examples for deep generative models, e.g. variational autoencoder (VAE) and VAE-

Generative Adversarial Networks (VAE-GANs). GANs, such as [123] are becoming

exceedingly popular nowadays in Computer Vision applications due to their ability

to learn data distributions and generate realistic images using those distributions.

The authors introduced three different classes of attacks for VAE and VAE-GANs.

Owing to the success of these attacks it is concluded that the deep generative models

are also vulnerable to adversaries that can convince them to turn inputs into very

different outputs. This work adds further support to the hypothesis that ’adversarial

examples’ are a general phenomenon for current neural network architectures’.

38

Attack on Semantic Segmentation and Object Detection

Semantic image segmentation and object detection are among the mainstream prob-

lems in Computer Vision. Inspired by Moosavi-Dezfooli et al. [80] and Metzen et

al. [73] showed the existence of image-agnostic quasi-imperceptible perturbations that

can fool a deep neural network into significantly corrupting the predicted segmen-

tation of the images. Moreover, they also showed that it is possible to compute

noise vectors that can remove a specific class from the segmented classes while keep-

ing most of the image segmentation unchanged (e.g removing pedestrians from road

scenes). Although it is argued that the ’space of the adversarial perturbations for the

semantic image segmentation is presumably smaller than image classification’, the

perturbations have been shown to generalize well for unseen validation images with

high probability. Arnab et al. [5] also evaluated FGSM [31] based adversarial attacks

for semantic segmentation and noted that many observations about these attacks for

classification do not directly transfer to segmentation task.

2.1.6 Miscellaneous Attacks on other Domain

The adversarial attacks discussed above are either the popular ones in the recent

literature or they are representative of the research directions that are fast becoming

popular.

Graph Adversarial Examples

Adversarial examples also exist in graph-structured data [125, 18]. Attackers usually

slightly modify the graph structure and node features, in an effort to cause the graph

neural networks [79, 47] to give the wrong prediction for node classification or graph

classification tasks. These adversarial attacks, therefore, raise concerns on the security

of applying graph neural networks. For example, a bank needs to build a reliable

credit evaluation system where their model should not be easily attacked by malicious

manipulations.

39

Adversarial Examples in Audio

The work in [15] studies how to attack state-of-the-art speech-to-text transcription

networks, such as DeepSpeech [37]. In their settings, when given any speech waveform

𝑥, they can add an inaudible sound perturbation 𝜃 that makes the synthesized speech

𝑥 + 𝜃 be recognized as any targeted desired phrase. In their attacking work, they

limited the maximum decibels (dB) at any time of the added perturbation noise, so

that the audio distortion is unnoticeable.

Adversarial Examples in Video

Most works concentrate on attacking static image classification models. However,

success on image attacks cannot guarantee that there exist adversarial examples on

videos and video classification systems. There are some works [104, 112] aim to deceive

object detection systems such as YOLOv2 [90], Faster R-CNN [91].The work [112]

generates adversarial patches to targets with lots of intra-class variety, namely per-

sons. The goal is to generate a patch that is able to successfully hide a person from

the state-of-the-art object detector YOLOv2 [90].

Adversarial Examples in Text

Text classification is one of the main tasks in natural language processing. In text

classification, the model is devised to understand a sentence and correctly label the

sentence. For example, text classification models can be applied to the IMDB dataset

for characterizing user’s opinion (positive or negative) on the movies, based on the

provided reviews. Recent works of adversarial attacks have demonstrated that text

classifiers are easily misguided by slightly modifying the text’s spelling, words or

structures. There are many researches work on the adversarial example in text [76, 23,

27, 59]. The work [76] considers to add perturbation on the word embedding [74], so as

to fool a LSTM [40] classifier. However, this attack only considers perturbing the word

embedding, instead of the original input sentence. The work HotFlip [23] considers

replacing a letter in a sentence in order to mislead a character level text classifier (each

40

letter is encoded to a vector). For example, changing a single letter in a sentence alters

the model’s prediction on its topic. The attack algorithm manages to achieve this

by finding the most influential letter replacement via gradient information. These

adversarial perturbations can be noticed by human readers, but they don’t change

the content of the text as a whole, nor do they affect human judgments. The work

in [60] considers manipulating the victim sentence on word and phrase levels. They

try adding, removing or modifying the words and phrases in the sentences.

Adversarial Examples on Face recognition

Face attributes are among the emerging soft biometrics for modern security systems.

Although face attribute recognition can also be categorized as a classification prob-

lem, we separately review some interesting attacks in this direction because face

recognition itself is treated as a mainstream problem in Computer Vision. Rozsa et

al. [95, 94] explored the stability of multiple deep learning approaches using the

CelebA benchmark [65] by generating adversarial examples to alter the results of

facial attribute recognition. By attacking the deep network classifiers with their so-

called ‘Fast Flipping Attribute’ technique, they found that robustness of deep neural

networks against the adversarial attacks varies highly between facial attributes. It

is claimed that adversarial attacks are very effective in changing the label of a tar-

get attribute to a correlated attribute. Mirjalili and Ross [75] proposed a technique

that modifies a face image such that its gender (for a gender classifier) is modified,

whereas its biometric utility for a face matching system remains intact. Similarly,

Shen et al. [101] proposed two different techniques to generate adversarial examples

for faces that can have high ‘attractiveness scores’ but low ‘subjective scores’ for the

face attractiveness evaluation using deep neural network. We refer to [100] for further

attacks related to the task of face recognition.

Adversarial Examples on Malware Detection

The existence of adversarial examples in safety-critical tasks, such as malware de-

tection, should be paid much attention. The work [34] built a DNN model on the

41

DREBIN dataset by [51], which contains 120,000 Android application samples, where

over 5,000 are malware samples. The trained model has 97% accuracy, but mal-

ware samples can evade the classifier if attackers add fake features to them. Another

work [4] considers using GANs to generate adversarial malware.

Adversarial Examples on Fingerprint Recognition

Fingerprint recognition systems are also one of the most safety-critical fields where

machine learning models are adopted. While there are adversarial attacks under-

mining the reliability of these models. For example, fingerprint spoof attacks copy

an authorized person’s fingerprint and replicate it on some special materials such

as liquid latex or gelatin. Traditional fingerprint recognition techniques especially

minutiae-based models fail to distinguish the fingerprint images generated from dif-

ferent materials. The works [49, 17] design a modified CNN to effectively detect the

fingerprint spoof attack.

2.1.7 Summary on Adversarial Attacks

In summary, the proliferation of AI in many fields means an increase in many secu-

rity risks for those AI systems themselves. Adversarial attacks have been and will

continue to receive a lot of attention both in research and reality. The adversarial

attacks methods are proposed in various fields such as image classification [14], object

detection [80], speech recognition [15], face recognition [101], malware [4], fingerprint

recognition [49, 17], and text classification [23]. It is obvious that adversarial attacks

are a very challenging issue because the characteristics of it are difficult to detect by

humans but it is possible to deceive the latest AI system. The adversarial attacks

will certainly continue to be studied more in the future.

42

2.2 Defense Strategies to Adversarial Examples

2.2.1 Adversarial Training

Since the discovery of adversarial examples for the deep neural networks [109], there

has been a general consensus in the related literature that the robustness of neu-

ral networks against these examples improves with adversarial training. Therefore,

most of the contributions introducing new adversarial attacks, e.g. [109, 31, 81] si-

multaneously propose adversarial training as the first line of defense against those

attacks. Although adversarial training improves the robustness of a network, it is a

non-adaptive strategy that requires training to be performed using strong attacks and

the architecture of the network is sufficiently expressive. Since adversarial training

necessitates increased training data size, we refer to it as a “brute-force” strategy. It is

also commonly observed in the literature that brute force adversarial training results

in regularizing the network (e.g. see [31, 97]) to reduce overfitting, which in turn im-

proves the robustness of the networks against the adversarial attacks. Inspired by this

observation, Miyato et al. [76] proposed a “Virtual Adversarial Training” approach to

smooth the output distributions of the neural networks. A related “stability training”

method is also proposed by Zheng et al. [122] to improve the robustness of neural

networks against small distortions to input images. It is noteworthy that whereas

adversarial training is known to improve the robustness of neural networks, Moosavi-

Dezfooli et al. [80] showed that effective adversarial examples can again be computed

for already adversarially trained networks.

2.2.2 Gradient Masking

Ross and Doshi-Velez [93] studied input gradient regularization [21] as a method for

adversarial robustness. Their method trains differentiable models (e.g. deep neural

networks) while penalizing the degree of variation resulting in the output with respect

to change in the input. Implying, a small adversarial perturbation becomes unlikely

to change the output of the trained model drastically. It is shown that this method,

43

when combined with brute-force adversarial training, can result in very good robust-

ness against attacks like FGSM [31] and JSMA [85]. However, each of these methods

almost doubles the training complexity of a network, which is already prohibitive in

many cases. Previously, Lyu et al. [68] also used the notion of penalizing the gradient

of loss function of network models with respect to the inputs to incorporate robust-

ness in the networks against L-BFGS [109] and FGSM [31] based attacks. Similarly,

Shaham et al. [99] attempted to improve the local stability of neural networks by min-

imizing the loss of a model over adversarial examples at each parameter update. They

minimized the loss of their model over worst-case adversarial examples instead of the

original data. In related work, Nguyen and Sinha [83] introduced a masking based

defense against C&W attack [14] by adding noise to the logit outputs of networks.

2.2.3 Image Compression

Dziugaite et al. [22] noted that most of the popular image classification datasets

comprise JPG images. Motivated by this observation, they studied the effects of

JPG compression on the perturbations computed by FGSM [31]. It is reported that

JPG compression can actually reverse the drop in classification accuracy to a large

extent for the FGSM perturbations. Nevertheless, it is concluded that compression

alone is far from an effective defense. JPEG compression was also studied by Guo

et al. [36] for mitigating the effectiveness of adversarial images. Moreover, Shin and

Song [102] have demonstrated the existence of adversarial examples that can survive

JPEG compression. Compression under Discrete Cosine Transform (DCT) was also

found inadequate as a defense against the universal perturbations [80] in a previous

work [2]. One major limitation of compression based defense is that larger compres-

sions also result in loss of classification accuracy on clean images, whereas smaller

compressions often do not adequately remove the adversarial perturbations. In an-

other related approach, Bhagoji et al. [9] proposed to compress input data using

Principal Component Analysis for adversarial robustness.

44

2.2.4 Image Denoising

There are some previous research works that tried to remove adversarial noises and

regained the right recognition of classifiers. Liao et al. [62] proposed a method named

High-level representation Guided Denoiser (HGD) as a defense for image classification

systems. This paper argued that many defense models can not remove all adversarial

perturbations so non-removed adversarial noises will are amplified to enormities in the

top layers of the target model and this will lead to a wrong prediction. To thoroughly

overcome this problem, they proposed a system in which the denoiser is trained by a

high-level representation guided denoiser (HGD) loss function. However, this paper

only implemented on ImageNet includes color images and not applied to a gray-scale

dataset such as MNIST. This is not very important but it may not work well on gray

images when the method based on the high-level representation in a very deep neural

network meanwhile a simple neural network can be used and works well for MNIST.

Xu et al. [120] used a strategy to reduce the degress of freedom available to an adver-

sary by squeezing out unnecessary input features that they call “Feature Squeezing".

The main idea in this paper is that they use two different denoisers to input for

squeezing unnecessary features, afterward, they compare the prediction results from

the target model and decide that input is adversarial or legitimate. They applied two

denoising methods: (1) squeezing color bit depth and (2) spatial smoothing method.

They evaluated their proposed method on variety of adversarial attacks methods,

however, there is unclear how they decided variety specified thresholds on different

benchmark datasets so those settings will make operators be exhausted when they

have to decide the thresholds for their systems and it is obviously ineffective when

this system has to cope with new and unknown dataset.

2.2.5 Image Transformation

There are several proposed defense methods based on image transformation. Lu

et al. [67] proposed the method to defeat adversarial examples based on changing

distance scaling. In this work, the authors evaluated the recognition capabilities of

45

the AI system when a distance from a road sign to a camera is 0.5 meters and 1.5

meters. This method is regarded as a scale-based method since the authors tried to

test the AI system’s recognition capabilities with a range of sizes of different object

sizes in images. Athalye et al. [7] proposed a new method to craft adversarial examples

on a variety of synthesized images by applying distortion and affine transformation.

This paper proposed the attack method, not a defense in an adversarial manner.

Flowchart of this proposed method can be described as original images -> modified

images (by distortion and/or affine transformation) -> create adversarial examples

from modified images. Tian et al. [113] used rotation techniques to train detector

neural networks for MNIST and CIFAR-10 datasets. They trained four detector

networks on different training sets. This research belongs to a training classifier-based

method where authors use both benign and adversarial images to train a classifier. By

using this strategy, a classifier that was trained with benign and adversarial examples

learned more important features and discriminated features than other networks that

were trained only with benign images. After training, the author re-test detector

networks by using rotated benign and adversarial images to evaluate the AI system’s

recognition capabilities. However, this paper only evaluated their method on small-

scale datasets such as MNIST and CIFAR-10 without a large-scaled dataset like

ImageNet.

2.2.6 Miscellaneous countermeasures

Liang et al. [61] treated perturbations to images as noise and used scalar quantization

and spatial smoothing filter to separately detect such perturbations. In a related ap-

proach, Feinman et al. [25] proposed to detect adversarial perturbations by harnessing

uncertainty estimates (of dropout neural networks) and performing density estima-

tion in the feature space of neural networks. Eventually, separate binary classifiers

are trained as adversarial example detectors using the proposed features. Gebhart

and Schrater [28] viewed neural network computation as information flow in graphs

and proposed a method to detect adversarial perturbations by applying persistent

homology to the induced graphs.

46

Detector subnetwork

Metzen et al. [72] proposed to augment a targeted network with a subnetwork that

is trained for a binary classification task of detecting adversarial perturbations in

inputs. It is shown that appending such a network to the internal layers of a model

and using adversarial training can help in detecting perturbations generated using

FGSM [31], BIM [52] and DeepFool [81] methods.

Detection method based on activation function

Lu et al. [66] hypothesized that adversarial examples produce different patterns of

ReLU activations in (the late stages of) networks than what is produced by clean

images. Based on this hypothesis, they proposed to append a Radial Basis Function

SVM classifier to the targeted models such that the SVM uses discrete codes computed

by the late-stage ReLUs of the network. To detect perturbation in a test image, its

code is compared against those of training samples using the SVM. Effective detection

of adversarial examples generated by [31, 52, 81] is demonstrated by their framework,

named SafetyNet.

Data augmentation

Grosse et al. [33] proposed to augment the potentially targeted neural network model

with an additional class in which the model is trained to classify all the adversarial

examples. Hosseini et al. [42] also employed a similar strategy to detect black-box

attacks.

Defense against universal perturbations

Akhtar et al. [2] proposed a defense framework against the adversarial attacks gen-

erated using universal perturbations [80]. The framework appends extra ‘pre-input’

layers to the targeted network and trains them to rectify a perturbed image so that

the classifier’s prediction becomes the same as its prediction on the clean version of

the same image. The pre-input layers are termed Perturbation Rectifying Network

47

(PRN), and they are trained without updating the parameters of the targeted net-

work. A separate detector is trained by extracting features from the input-output

differences of PRN for the training images. A test image is first passed through the

PRN and then its features are used to detect perturbations. If adversarial perturba-

tions are detected, the output of PRN is used to classify the test image.

Defense based on Generative Adversarial Networks

Lee et al. [58] used the popular framework of Generative Adversarial Networks [30]

to train a network that is robust to FGSM like attacks. The authors proposed to

directly train the network along with a generator network that attempts to generate

perturbation for that network. During its training, the classifier keeps trying to

correctly classify both the clean and perturbed images. We categorize this technique

as an ‘add-on’ approach because the authors propose to always train any network in

this fashion. In another GAN-based defense, Shen et al. [45] use the generator part

of the network to rectify a perturbed image.

MagNet method

Meng and Chen [71] proposed a framework that uses one or more external detectors

to classify an input image as adversarial or clean. During training, the framework

aims at learning the manifold of clean images. In the testing phase, the images that

are found far from the manifold are treated as adversarial and are rejected. The

images that are close to the manifold (but not exactly on it) are always reformed to

lie on the manifold and the classifier is fed with the reformed images. The notion

of attracting nearby images to the manifold of clean images and dropping the far-off

images also inspires the name of the framework, i.e. MagNet.

2.2.7 Summary on Adversarial Defense

Since adversarial perturbations generated by many methods look like high-frequency

noise to a human observer1 multiple authors have suggested using image preprocess-

48

ing and denoising as a potential defense against adversarial examples. There is a

large variation in the proposed preprocessing techniques, like doing JPEG compres-

sion [22] or applying median filtering and reducing the precision of input data [120].

While such defenses may work well against certain attacks, defenses in this category

have been shown to fail in the white box case, where the attacker is aware of the de-

fense [38]. Many defenses, intentionally or unintentionally, fall into a category called

“gradient masking”. Most white-box attacks operate by computing gradients of the

model and thus fail if it is impossible to compute useful gradients. Gradient masking

consists of making the gradient useless, either by changing the model in some way

that makes it non-differentiable or makes it have zero gradients in most places or make

the gradients point away from the decision boundary. Essentially, gradient masking

means breaking the optimizer without actually moving the class decision boundaries

substantially. Because the class decision boundaries are more or less the same, de-

fenses based on gradient masking are highly vulnerable to black-box transfer [84].

Some defense strategies (like replacing smooth sigmoid units with hard threshold

units) are intentionally designed to perform gradient masking. Many defenses are

based on detecting adversarial examples and refusing to classify the input if there are

signs of tampering [72]. This approach works long as the attacker is unaware of the

detector or the attack is not strong enough. Otherwise, the attacker can construct

an attack that simultaneously fools the detector into thinking an adversarial input is

a legitimate input and fools the classifier into making the wrong classification [13].

The most popular defense in current research papers is probably adversarial train-

ing [31, 109, 81]. The idea is to inject adversarial examples into the training process

and train the model either on adversarial examples or on a mix of clean and adversar-

ial examples. The approach was successfully applied to large datasets [53], and can

be made more effective by using discrete vector code representations rather than real

number representations of the input [12]. One key drawback of adversarial training

is that it tends to overfit to the specific attack used at training time. This has been

overcome, at least on small datasets, by adding noise prior to starting the optimizer

for the attack [70]. Another key drawback of adversarial training is that it tends to

49

inadvertently learn to do gradient masking rather than to actually move the decision

boundary. This can be largely overcome by training on adversarial examples drawn

from an ensemble of several models [114]. A remaining key drawback of adversarial

training is that it tends to overfit to specific constraint region used to generate the

adversarial examples (models trained to resist adversarial examples in a max-norm

ball may not resist adversarial examples based on large modifications to background

pixels [29] even if the new adversarial examples do not appear particularly challenging

to a human observer).

50

Chapter 3

Proposed Automatic Detection

System for Adversarial Examples

3.1 Image Transformation for Detecting Adversarial

Examples

In this section, we introduce some common methods for creating adversarial exam-

ples and defense approaches. We mainly focus on adversarial examples for image

classification. We have to note that adversarial examples are effective to other tasks

such as face recognition, one of image classification [32], natural language process-

ing [27] and malware detection [35]. However those tasks are out of our research

scope. In this work, we explored the robustness of deep neural networks through the

very simple techniques but very effective coordinate transformation. Firstly, we craft

the adversarial examples by using the PGD algorithm [69] on the original training

images. Afterward, we apply our proposed method to those adversarial examples and

evaluate our method through by observing the recognition performances. The results

show that our method is very effective for making deep neural networks more robust

against adversarial examples.

Our contributions. Our research shows the following contributions:

∙ We investigated and analyzed attack approaches for crafting adversarial exam-

51

ples. We showed attack approaches along their different strategies to provide

an intuitive overview of these attack methods.

∙ We investigated the modern defense approaches and their variants in adversarial

settings. Base on our investigation, we showed that the defense of a deep neural

network is still challenging and is not yet completely satisfactory. It remains a

rapidly evolving research area and that is also our motivation for this research.

∙ Our proposed approach is successfully applied two types of common datasets

that are a small-scale dataset (MNIST) and a large-scale dataset (ImageNet).

Our defense method worked well to defeat adversarial examples and in some

cases it recovered the deep learning classifier’s performance with high accuracy

rates.

3.1.1 Crafting Adversarial Examples Phase

We consider the white-box targeted attack settings, where the attacker can fully

access into the model type, model architecture, all trainable parameters and the

adversary aims to change the classifier’s prediction to some specific target class. The

attackers use available information to identify the feature space where the model is

vulnerable or try to find the victim decision boundaries. Then the victim model is

exploited by altering a clean input by using adversarial example methods. To create

adversarial samples that are misclassified by machine learning model, an adversary

with knowledge of the model’s classifier 𝑓 and its trainable parameters. In this work,

we use Projected Gradient Descent [70] method for crafting adversarial examples. We

define classifier function 𝑓 : R𝑛 →
[︁
1...𝑘

]︁
that maps image pixel value vectors to a

particular label. Then we assume that function 𝑓 has a loss function 𝐿 : R𝑛×
[︁
1...𝑘

]︁
→

R. For an input image 𝑥 ∈ R𝑛 and target label 𝑦 ∈
[︁
1...𝑘

]︁
, our system aims to solve

the following optimization problem: 𝛿+𝐿(𝑥, 𝑦) subject to 𝑥+ 𝛿 ∈
[︁
0, 1
]︁𝑛

, where 𝛿 is

a perturbation noise that we add to the original image 𝑥. Whenever finding the best

adversarial candidate, we have to project adversarial to constrain area (𝑥, 𝜖) by using

a projection operator 𝑝𝑟𝑜𝑗𝑒𝑐𝑡(𝑥,𝜖)(). We have to note that this function method would

52

yield the solution for 𝑓(𝑥) in the case of convex losses, however the neural networks

are non-convex so we end up with an approximation in this case. In this case, we

use the output of the second-to-last layer logits for calculating the gradient instead

of using the output of the Softmax. So our attack method is denoted as algorithm

1. In attacking phase, we set learning rate for crafting adversarial examples is 0.01

and iterative process is 500 times. From the clean images we will create the targeted

output images.

Algorithm 1: Crafting Adversarial Examples Algorithm
input : 𝑥, 𝑦𝑡𝑟𝑢𝑒, 𝑦*, 𝑓 , 𝜖, 𝛼
output : 𝑥*

parameter: learning rate = 0.01, epochs = 500

1 𝑥← 𝑥* // initial adversarial sample

2 𝛿𝑥 ← 0⃗ // initial perturbation factor

3 𝑖𝑡𝑒𝑟 ← 1 // initial iteration counter

4 while ||𝛿𝑥||∞ < 𝜖 and 𝑓(𝑥*) ̸= 𝑦* and 𝑖𝑡𝑒𝑟 <= 𝑒𝑝𝑜𝑐ℎ𝑠 do
5 𝑥* ← 𝑥 + 𝛿 · 𝑠𝑖𝑔𝑛(▽𝐿(𝑦*|𝑥*))
6 𝑥* ← project(𝑥,𝜖) (𝑥*)
7 maximize 𝐿(𝑦*|𝑥*) respect to ||𝛿𝑥||∞
8 𝛿 ← 𝑐𝑙𝑖𝑝(𝑥*, 𝑥− 𝜖, 𝑥 + 𝜖)
9 𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1

10 end
11 return 𝑥*

3.1.2 Coordinate Transformation

Affine transformations have been widely used in computer vision [44]. Now we define

the range of defense that we want to apply into the adversarial examples for protecting

a deep neural network. In this section, we describe the Coordinate Transformation

manner that is one of an affine transformations, we find the parameter (𝑖*, 𝑗*, 𝛼)

that rotates the adversarial image with degree around the center (see Fig. 3-1) will

make classifier remove the adversarial noises. Formally, the pixel at position (𝑖, 𝑗)

is rotated counterclockwise by multiplying a rotation matrix that has cos and sin

53

elements corresponding to the angle 𝛼:⎡⎣𝑖*
𝑗*

⎤⎦ =

⎡⎣cos𝛼 − sin𝛼

sin𝛼 cos𝛼

⎤⎦ ·
⎡⎣𝑖
𝑗

⎤⎦ (3.1)

So the vectors

⎡⎣𝑖
𝑗

⎤⎦ and

⎡⎣𝑖*
𝑗*

⎤⎦ have the same magnitude and they are separated by

an given angle 𝛼. In our research, we set angle 𝛼 ∈
[︁
1, 30

]︁
because it is obviously when

we increase angle degree too much the classification capabilities of machine learning

system will be effected and decrease accuracy rate for original images. So the range[︁
1, 30

]︁
is suitable for defeating adversarial effectiveness and regain the accuracy on

original images. Our experiments show that we can find the best angle that it defeats

completely the adversarial noise and re-recognize the correct image.

(a) Original Oscilloscope Image (b) Coordinate Transformation with 20 degree
counterclockwise rotation

Figure 3-1: Coordinate Transformation with 20 degree counterclockwise rotation
around the center

When we apply this technique on the adversarial examples that are generated, we

observe that adversarial examples failed to misclassify to coordinate transformation.

For more intuitive understanding, supposing we have original data (𝑥, 𝑦) and model

𝑓 . So our prediction label is 𝑦𝑝𝑟𝑒𝑑. And the loss function 𝐿(𝑦, 𝑦𝑝𝑟𝑒𝑑) shows us how far

54

𝑦𝑝𝑟𝑒𝑑 is away from 𝑦. When we create adversarial examples, the purpose is to increase

the loss function 𝐿(𝑦, 𝑦𝑝𝑟𝑒𝑑) by adding a small adversarial noise to original input 𝑥.

Recall the Projected Gradient Descent algorithm, equation (2.2) will be rewritten as

the equation as bellow:

𝑥* = 𝑥 + 𝛿 ·
(︂
𝜕𝐿(𝑦, 𝑦𝑝𝑟𝑒𝑑)

𝜕𝑥

)︂
respect to project(𝑥,𝜖)(𝑥

*) (3.2)

We aim to solve equation (3.2) by maximizing loss function 𝐿(𝑦, 𝑦𝑝𝑟𝑒𝑑) instead

of 𝐿(𝑥, 𝑦). The logits (vector of raw prediction) is the output of the deep neural

network before we feed them into the Softmax activation function for normalizing, it

is described as:

logits = 𝑓(𝑥) (3.3)

𝑦𝑝𝑟𝑒𝑑 = softmax(logits) (3.4)

Softmax function takes an N-dimensional vector logits and transfers it into a vector

of real number in range (0,1) which sum of them is equal to 1:

softmax(logits) =
𝑒logits∑︀
𝑒logits

(3.5)

And in the fundamental derivative rule, from a given 𝑓(𝑥) = 𝑔(𝑥)
ℎ(𝑥)

, we have 𝑓 ′(𝑥) =

𝑔′(𝑥)ℎ(𝑥)−ℎ′(𝑥)𝑔(𝑥)
ℎ(𝑥)2

. So in equation (3.5), 𝑔(𝑥) = 𝑒logits = 𝑒𝑓(𝑥) and ℎ(𝑥) =
∑︀

𝑒logits =∑︀
𝑒𝑓(𝑥). In general, we need to calculate the partial derivate of softmax by pass it

back to the previous layer during backpropagation and it will be defined in general

form as:

𝜕softmax(𝑓𝑖(𝑥)))

𝜕𝑥𝑗

=
𝜕𝑠𝑖
𝜕𝑥𝑗

=
𝜕 𝑒𝑥𝑖∑︀𝑁

𝑘=1 𝑒
𝑥𝑘

𝜕𝑥𝑗

(3.6)

Where 𝑠 shorts for softmax function. In this case, we have 𝑔(𝑥) = 𝑒𝑥𝑖 and ℎ(𝑥) =

55

∑︀𝑁
𝑘=1 𝑒

𝑥𝑘 . It is obviously that derivative of exponential 𝑔′(𝑥) = 𝑒′𝑥𝑖 = 𝑒𝑥𝑖 . Meanwhile,

ℎ′(𝑥) = 𝑒𝑥𝑖 when 𝑖 = 𝑗 and ℎ′(𝑥) = 0 when 𝑖 ̸= 𝑗.

Let consider case when 𝑖 = 𝑗:

𝜕 𝑒𝑥𝑖∑︀𝑁
𝑘=1 𝑒

𝑥𝑘

𝜕𝑥𝑗

=
𝑒𝑥𝑖
∑︀𝑁

𝑘=1 𝑒
𝑥𝑘 − 𝑒𝑥𝑗𝑒𝑥𝑖(︁∑︀𝑁

𝑘=1 𝑒
𝑥𝑘

)︁2 (3.7)

=
𝑒𝑥𝑖

(︁∑︀𝑁
𝑘=1 𝑒

𝑥𝑘 − 𝑒𝑥𝑗

)︁
(︁∑︀𝑁

𝑘=1 𝑒
𝑥𝑘

)︁2 (3.8)

=
𝑒𝑥𝑖∑︀𝑁
𝑘=1 𝑒

𝑥𝑘

∑︀𝑁
𝑘=1 𝑒

𝑥𝑘 − 𝑒𝑥𝑗∑︀𝑁
𝑘=1 𝑒

𝑥𝑘

(3.9)

= 𝑠𝑖(1− 𝑠𝑗) (3.10)

For 𝑖 ̸= 𝑗, we have:

𝜕 𝑒𝑥𝑖∑︀𝑁
𝑘=1 𝑒

𝑥𝑘

𝜕𝑥𝑗

=
0− 𝑒𝑥𝑗𝑒𝑥𝑖(︁∑︀𝑁

𝑘=1 𝑒
𝑥𝑘

)︁2 (3.11)

=
−𝑒𝑥𝑗∑︀𝑁
𝑘=1 𝑒

𝑥𝑘

× 𝑒𝑥𝑖∑︀𝑁
𝑘=1 𝑒

𝑥𝑘

(3.12)

= −𝑠𝑗𝑠𝑖 (3.13)

We will calculate loss between 𝑦 and 𝑦𝑝𝑟𝑒𝑑 by using cross entropy function that

indicates the distance between what the model believes the output distribution should

be and what the original distribuation really is.

𝐿(𝑦, 𝑦𝑝𝑟𝑒𝑑) = CrossEntropy(𝑦, 𝑦𝑝𝑟𝑒𝑑) (3.14)

For two discrete probability distributions 𝑦 and 𝑦𝑝𝑟𝑒𝑑, the cross-entropy function is

defined as:

CrossEntropy(𝑦, 𝑦𝑝𝑟𝑒𝑑) = −
∑︁
𝑖

𝑦𝑖log(𝑦𝑝𝑟𝑒𝑑) (3.15)

56

By calculating partial derivative of function (3.14), we have:

𝜕𝐿(𝑦, 𝑦𝑝𝑟𝑒𝑑)

𝜕𝑥
=

𝜕𝐿(𝑦, 𝑦𝑝𝑟𝑒𝑑)

𝜕𝑦𝑝𝑟𝑒𝑑

𝜕𝑦𝑝𝑟𝑒𝑑
𝜕𝑥

(3.16)

=
𝜕𝐿(𝑦, 𝑦𝑝𝑟𝑒𝑑)

𝜕𝑓(𝑥)

𝜕𝑓(𝑥)

𝜕𝑥
(3.17)

=
𝜕(−

∑︀
𝑖 𝑦𝑖log(𝑦𝑝𝑟𝑒𝑑))

𝜕𝑦𝑝𝑟𝑒𝑑

𝜕𝑦𝑝𝑟𝑒𝑑
𝜕𝑥

(3.18)

= −
∑︁
𝑖

𝑦𝑖
𝜕log(𝑦𝑝𝑟𝑒𝑑)

𝜕𝑦𝑝𝑟𝑒𝑑

𝜕𝑦𝑝𝑟𝑒𝑑
𝜕𝑥

(3.19)

= −
∑︁
𝑖

𝑦𝑖
1

𝑦𝑝𝑟𝑒𝑑

𝜕𝑦𝑝𝑟𝑒𝑑
𝜕𝑥

(3.20)

= −
∑︁
𝑖

𝑦𝑖
1

𝑦𝑝𝑟𝑒𝑑

𝜕softmax(𝑓(𝑥))

𝜕𝑥
(3.21)

From derivative of softmax equations (3.6), (3.7) and (3.11), we have:

𝜕𝐿(𝑦, 𝑦𝑝𝑟𝑒𝑑)

𝜕𝑥
= −𝑦𝑖(1− 𝑦𝑝𝑟𝑒𝑑(𝑖))−

∑︁
𝑘 ̸=𝑖

𝑦𝑘
1

𝑦𝑝𝑟𝑒𝑑(𝑘)
(−𝑦𝑝𝑟𝑒𝑑(𝑘).𝑦𝑝𝑟𝑒𝑑(𝑖)) (3.22)

= −𝑦𝑖(1− 𝑦𝑝𝑟𝑒𝑑(𝑖)) +
∑︁
𝑘 ̸=𝑖

𝑦𝑘.𝑦𝑝𝑟𝑒𝑑(𝑖) (3.23)

= −𝑦𝑖 + 𝑦𝑖𝑦𝑝𝑟𝑒𝑑(𝑖) +
∑︁
𝑘 ̸=𝑖

𝑦𝑘.𝑦𝑝𝑟𝑒𝑑(𝑖) (3.24)

= −𝑦𝑝𝑟𝑒𝑑(𝑖)

(︃
𝑦𝑖 +

∑︁
𝑘 ̸=𝑖

𝑦𝑘

)︃
− 𝑦𝑖 (3.25)

Because y is a one hot encoded vector for the true labels, so
∑︀

𝑘 𝑦𝑘 = 1 and 𝑦𝑖 +∑︀
𝑘 ̸=𝑖 𝑦𝑘 = 1. So we have:

𝜕𝐿(𝑦, 𝑦𝑝𝑟𝑒𝑑)

𝜕𝑥
= (𝑦𝑝𝑟𝑒𝑑 − 𝑦) (3.26)

From equations (3.6) and (3.26), it is clear that 𝐿(𝑦, 𝑦𝑝𝑟𝑒𝑑) is influenced by product

of trainable weights and activations when we calculate partial derivative of softmax

by passing it back during backpropagation to find the best adversarial perturbation

57

𝛿 . For examples, when we have two images with the same label, their activations

in any fixed networks are similar and the weights of the network are unchanged.

Consequently, 𝐿(𝑦, 𝑦𝑝𝑟𝑒𝑑) is a constant for any given image 𝑥 with the same class. This

means the gradient is highly correlated with true label 𝑦. Because of this property,

when attacker added a adversarial noise, the classifying 𝑥* becomes a simpler problem

than the original problem of classifying 𝑥, as 𝑥* contains extra information i.e the

added noise. However, with a small change in input data by rotating adversarial

images with a particular angle the system makes a different decision. And in this

case, we show that deep neural network recognizes the rotated adversarial images as

the true label instead of the targeted label.

3.1.3 Geometric Translation and Combination

In this section, we describe about the Geometric Translation and combination method.

Geometric Translation is one of method of Geometric Transformation that is inter-

preted as the addition of a constant vector to every point or shifting the origin of

the coordinates. In our work, we applied Geometric Translation on the adversarial

examples by shifting them from the top-left to bottom-right direction (see Fig. 3-2).

We define the shift vector 𝑉 in (𝑣𝑖,𝑣𝑗) direction:

𝑉 =

⎡⎣1 0 𝑣𝑖

0 1 𝑣𝑗

⎤⎦ (3.27)

Before applying this transformation, we flatten adversarial example matrix to column

vector, then our adversarial example 𝑥* can be multiplied by this geometric translation

matrix as:

𝑉 · 𝑥* =

⎡⎣1 0 𝑣𝑖

0 1 𝑣𝑗

⎤⎦ ·
⎡⎢⎢⎢⎣
𝑥𝑖

𝑥𝑗

1

⎤⎥⎥⎥⎦ =

⎡⎣𝑣𝑖 + 𝑥𝑖

𝑣𝑗 + 𝑥𝑗

⎤⎦ = 𝑥** (3.28)

58

𝑥** is created by geometric translation and we feed it into the deep learning classifier.

Moreover, geometric translation shifts whole image into a particular direction and this

will leave blank spaces, we will fill in those blank spaces by black pixels and we call

that is the black canvas. After applying the geometric translation into the adversarial

examples, we use the target machine learning classifier to classify new images and

observe the worst case and best case and comparing them with the classification rate

on the clean inputs. Combination phase is that we will combine rotation (coordinate

(a) Original Oscilloscope Image (b) Geometric Translation with 20 degree
from top-left corner

Figure 3-2: Geometric Translation with 20 degree from top-lelf corner

transformation) and translation (geometric translation) into end-to-end system for

defeating adversarial examples. Firstly, we applied the geometric translation to the

adversarial examples with (𝑣𝑖, 𝑣𝑗) : {0, 1, 2, 3}. By shifting the adversarial examples

in very small distance, we expect to keep the key features of the images in the visible

window and to avoid losing performance of our system. And by using the black

canvas settings, we will ensure that there is no information of input is lost during our

process. Secondly, we apply the use the coordinate transformation on the translated

images and feed them into the machine learning classifier to verify our assumption.

We keep the same coordinate transformation setting in this phase with 𝛼 ∈ [0, 30]

in the clockwise direction. The final step, we evaluate the target machine learning

classifier’s performance by using new combination patterns (see Fig. 3-3).

59

(a) Original Oscilloscope Image (b) Combination of Coordinate Transforma-
tion and Geometric Translation with 20 de-
gree

Figure 3-3: Combination of Coordinate Transformation and Geometric Transla-
tion.First, we shift image from top-left to bottom-right with 20 degree. Then, we
rotate image with 20 degree counterclock wise from center of image

3.1.4 Proposed Defending Method

In this section, we describe about our proposed defending method for Deep Neural

Networks. As we mentioned earlier, we define three main functions include TRNS,

ROT and TR that stand for Geometric Translation, Coordination Transformation

and Combination, respectively. We set a threshold equal to 0.9 for detecting adver-

sarial examples. Our proposed defending method can be illustrated as Algorithm 2.

Recall the loss function that we used for crafting adversarial examples in the previous

section, which is used to measure the inconsistency between predicted label 𝑦* and

actual label 𝑦. It is a non-negative value, where the robustness of model increases

along with the decrease of the value of loss function. And in our deep learning model,

we use the Softmax classifier and cross-entropy, one of the popular loss function for

evaluating softmax classifier. The Softmax classifier that has a probabilistic interpre-

tation that we can get normalized class probabilities. Softmax function is defined as

𝑓𝑖(𝑥) = 𝑒𝑥𝑖/
∑︀

𝑘 𝑒
𝑥𝑘 ; where 𝑓𝑖 defines the 𝑖-th element of the vector of class function 𝑓 ,

𝑥𝑘 defines the 𝑘-th element of input samples. It can be interpreted as the normalized

60

probability assigned to the correct label 𝑦𝑖 given the image 𝑥𝑖. Exponentiating these

quantities therefore gives the probabilities, and the division performs the normaliza-

tion so that the probabilities sum to one. In the probabilistic interpretation, we are

therefore minimizing the negative log likelihood of the correct class, which can be

interpreted as performing Maximum Likelihood Estimation (MLE). A nice feature

of this view is that we can now also interpret the regularization term 𝑅(𝑊) in the

full loss function as coming from a Gaussian prior over the weight matrix 𝑊 , where

instead of MLE we are performing the Maximum a posteriori (MAP) estimation.

The full details of this derivation are beyond the scope of this work so we mention

these interpretations to make it more clear about Softmax classifier and the output

of Softmax classifier is probabilities of all labels. In our proposed methods, we use

Softmax function to compute the probabilities of primary input and modified input

and compare them with threshold to make a decision which one is benign or not. In

algorithm 2, we define 𝑏𝑎𝑠𝑒𝑃𝑟𝑜𝑏𝑠 is probability of primary input 𝑥, after applying

our methods, we get the modified input and measure its probability 𝑝𝑟𝑜𝑏. If |𝑝𝑟𝑜𝑏 -

𝑏𝑎𝑠𝑒𝑃𝑟𝑜𝑏| ≥ 0.9, it means probability of input dramatically drops so we can point

out it is adversarial example, whereas it is benign input.

3.1.5 Experimental setup

Datasets. We consider the ImageNet dataset [96], which is a very large database

designed for use in visual object recognition research and MNIST dataset [57], which

is very common dataset for evaluating research works related to neural networks. The

original ImageNet includes more than 14 millions images in 20,000 categories with a

typical category, such as “computer mouse” or “vending machine”, consisting of several

hundred images. MNIST is a database of handwritten digits that is commonly used

in various image processing systems. It includes 60,000 training images and 10,000

testing images that fit into a 28× 28 pixel and grayscale levels.

Deep learning models. The machine learning models that we use are Google

Inception V3 [108] and LeNet [55]. Google Inception V3 is a widely-used image

classification model that has been shown to attain very high accuracy on the ImageNet

61

Algorithm 2: Proposed Defending Algorithm
input : 𝑥, 𝑦, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 𝑅𝑂𝑇 , 𝑇𝑅𝐴𝑁𝑆, 𝑇𝑅
output : 1: adversarial input, 0: clean input

1 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← 0.9; 𝑏𝑎𝑠𝑒𝑃𝑟𝑜𝑏 ← 𝑃 (𝑦𝑖|𝑥𝑖) = 𝑒𝑓𝑦𝑖∑︀
𝑗 𝑒

𝑓𝑗

2 if ROT then
3 𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡 ← 0 ; 𝑒𝑛𝑑𝑃𝑜𝑖𝑛𝑡 ← 30
4 for 𝑖 in range(𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡,𝑒𝑛𝑑𝑃𝑜𝑖𝑛𝑡) do
5 𝑎𝑛𝑔𝑙𝑒 ← i * 𝜋/180
6 𝑥𝑅𝑂𝑇 ← 𝑅𝑂𝑇 (𝑥, 𝑎𝑛𝑔𝑙𝑒)

7 𝑝𝑟𝑜𝑏 ← 𝑃 (𝑦𝑖|𝑥𝑅𝑂𝑇) = 𝑒𝑓𝑦𝑖∑︀
𝑖 𝑒

𝑓𝑖

8 end

9 else if TRNS then
10 𝑚𝑖𝑛𝑃𝑜𝑖𝑛𝑡 ← 0; 𝑚𝑎𝑥𝑃𝑜𝑖𝑛𝑡 ← 3
11 for 𝑖 in range(𝑚𝑖𝑛𝑃𝑜𝑖𝑛𝑡,𝑚𝑎𝑥𝑃𝑜𝑖𝑛𝑡) do
12 for 𝑗 in range(𝑚𝑖𝑛𝑃𝑜𝑖𝑛𝑡,𝑚𝑎𝑥𝑃𝑜𝑖𝑛𝑡) do
13 𝑣𝑖 ← 𝑖
14 𝑣𝑗 ← 𝑗
15 𝑥𝑇𝑅𝑁𝑆 ← 𝑇𝑅𝑁𝑆(𝑥, 𝑣𝑖, 𝑣𝑗)

16 𝑝𝑟𝑜𝑏 ← 𝑃 (𝑦𝑖|𝑥𝑇𝑅𝑁𝑆) = 𝑒𝑓𝑦𝑖∑︀
𝑖 𝑒

𝑓𝑖

17 end

18 end

19 else
20 𝑚𝑖𝑛𝑃𝑜𝑖𝑛𝑡 ← 0; 𝑚𝑎𝑥𝑃𝑜𝑖𝑛𝑡 ← 3
21 for 𝑖 in range(𝑚𝑖𝑛𝑃𝑜𝑖𝑛𝑡,𝑚𝑎𝑥𝑃𝑜𝑖𝑛𝑡) do
22 for 𝑗 in range(𝑚𝑖𝑛𝑃𝑜𝑖𝑛𝑡,𝑚𝑎𝑥𝑃𝑜𝑖𝑛𝑡) do
23 𝑣𝑖 ← 𝑖
24 𝑣𝑗 ← 𝑗
25 𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡 ← 0 ; 𝑒𝑛𝑑𝑃𝑜𝑖𝑛𝑡 ← 30
26 𝑥𝑇𝑅𝑁𝑆 ← 𝑇𝑅𝑁𝑆(𝑥, 𝑣𝑖, 𝑣𝑗)
27 for 𝑞 in range(𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑖𝑛𝑡,𝑒𝑛𝑑𝑃𝑜𝑖𝑛𝑡) do
28 𝑎𝑛𝑔𝑙𝑒 ← 𝑞 * 𝜋/180
29 𝑥𝑇𝑅 ← 𝑅𝑂𝑇 (𝑥𝑇𝑅𝑁𝑆, 𝑎𝑛𝑔𝑙𝑒)

30 𝑝𝑟𝑜𝑏 ← 𝑃 (𝑦𝑖|𝑥𝑇𝑅) = 𝑒𝑓𝑦𝑖∑︀
𝑖 𝑒

𝑓𝑖

31 end

32 end

33 end

34 end
35 if |𝑝𝑟𝑜𝑏 - 𝑏𝑎𝑠𝑒𝑃𝑟𝑜𝑏| ≥ 0.9 then
36 return 1
37 else
38 return 0
39 end

62

dataset. The model itself is made up of symmetric and asymmetric building blocks,

including convolutional layers, average and max pooling, concats, dropouts and fully

connected layers. Batchnorm is used extensively throughout the model and applied

to activation inputs while loss is computed by Softmax layer. For this model, Google

customized the ImageNet dataset that includes 1,331,167 images which are divided

into training and evaluation sets containing 1,281,167 and 50,000 images, respectively.

Its architecture that we use for crafting adversarial examples is as in table 3.1. We

emphasize that we use the logits value in the last adjacency layer for compute the

loss function 𝐿(𝑥, 𝑦).

Table 3.1: Google Inception Architecture [108]

type
patch

size/stride
or remarks

input size

conv 3 × 3/2 299 × 299 × 3
conv 3 × 3/1 149 × 149 × 32
conv padded 3 × 3/1 147 × 147 × 32
pool 3 × 3/2 147 × 147 × 64
conv 3 × 3/1 73 × 73 × 64
conv 3 × 3/2 71 × 71 × 80
conv 3 × 3/1 35 × 35 × 192

3 × Inception
Inception
filters 35 × 35 × 288

5 × Inception
Inception
filters 17 × 17 × 768

2 × Inception
Inception
filters 8 × 8 × 1280

pool 8 × 8 8 × 8 × 2048
linear logits 1 × 1 × 2048
softmax classifier 1 × 1 × 1000

LeNet [55] includes 7 deep layers not counting input layer that are convolutional

layers and pooling operation. LeNet architecture that we use for crafting adversarial

examples is as in table 3.2. This original model worked on the 32 × 32 input size,

however we customized this model in order to accept to MNIST dataset of 28 × 28

input sizes.

63

Table 3.2: LeNet architecture [56]

type
kernel

size/feature
maps

input size

conv 5 × 5/6 32 × 32 × 1
pool 2 × 2/6 28 × 28 × 6
conv 5 × 5/16 14 × 14 × 6
pool 2 × 2/16 10 × 10 × 16
conv 5 × 5/120 5 × 5 × 16
full connected logits 1 × 1 × 84
softmax classifier 1 × 1 × 10

3.1.6 Results

For evaluating our method, we consider 30 images from three categories such as Com-

puter Mouse (C-Mouse), Computer Keyboard (Keyboard) and Vending Machine (V-

Machine) in ImageNet with 10 images per each category. By considering both original

images and adversarial images, the total number of samples is 60 images. Because of

image copyright issues, for visualization we used three images of Keyboard, C-Mouse

and V-Machine that were captured by ourself. Meanwhile, for MNIST dataset, we

randomly select ten digit-0 images for crafting adversarial examples with targeted

class is digit-4. The first, we use the PGD method for creating adversarial images

in the white-box setting. Next, we apply the coordinate transformation, geometric

translation and combination of these two transformations for those adversarial im-

ages and feed them into again the machine learning classifiers for classification. The

results show that our proposed method is very effective for removing the adversarial

noise and recovering the acceptable classification accuracy rate.

For attacking Google Inception model, we use 30 images from ImageNet and three

our own images to craft the adversarial examples toward to ostrich label. After ap-

plying geometric translations, coordinate transformations and combination steps, we

observe the effects of adversarial examples on the classifier and recognize that those

adversarial perturbations are mostly removed and in some particular cases our method

recover the performance of classifier with right answers. The geometric translation

64

settings are 𝑣𝑖 ∈ [0, 3] and 𝑣𝑗 ∈ [0, 3]. That means we test 15 difference transfor-

mations for each image. In table 3.3 we only record the worst and the best case.

In this table, the column “Primary” shows the classification’s results on the original

images (Clean) and adversarial images (Adv) before applying our method. The next

two columns “Original class” and “Targeted class” show the results after applying our

method. “Original class” column shows the worst-case and the best-case that classifier

classify them as “Original” and the same meaning to “Targeted class” column. From

this table, we illustrate that geometric translation mostly defeat adversarial effects

when it makes confidence rate dramatically decrease. For example, in “Keyboard”

case, the confidence recognition rate for “ostrich” drops from 99.9% to 5.07%.

Table 3.3: Geometric Translation results on our own images

Image
Primary Original class Targeted class

Clean Adv Min Max Min Max
Keyboard 72.4% 99.9% 15.69% 62.01% 0.02% 5.07%
C-Mouse 86.1% 100% 3.01% 15.43% 0.1% 10.4%
V-Machine 77.9% 99.8% 3.74% 66.71% 0.18% 17.2%

The performance of the coordinate transformation is very impressive that is shown

in table 3.4. We observe that deep learning classifier are correctly recognize the

original class at the best-case is 92.67%, it is even better than when our method has

not been applied and the maximum probability for targeted recognition is only 3.67%.

Table 3.4: Coordinate Transformation results on our own images

Image
Primary Original class Targeted class

Clean Adv Min Max Min Max
Keyboard 72.4% 99.9% 28.27% 56.5% 0.01% 0.22%
C-Mouse 86.1% 100% 5.81% 92.67% 0.0% 2.16%
V-Machine 77.9% 99.8% 2.62% 55.04% 0.01% 3.67%

In combination setting, firstly, we perform the geometric translation on the ad-

versarial images, after that we apply coordinate transformation in the range [0,30].

In geometric translation step, we also consider 15 cases for each image 𝑣𝑖 ∈ [0, 3] and

65

𝑣𝑗 ∈ [0, 3]. It is obvious that it excludes (𝑣𝑖, 𝑣𝑗) = (0, 0). The result is shown in

table 3.5. For combination setting, we observe that it works well on all settings and

the worst record with “V-Machine” image is only 2.14%. In “Keyboard”, the minimum

of classification rate of targeted class all is 0.01%, and the worst case is 0.23%. Mean-

while, the best case for original label is very potential at 65.82%. For “C-Mouse”, we

observe that the best classification rate for original label reaches 93.86%, and classi-

fication accuracy rate for adversarial label is less than 1.83. The results confirm that

the combination method gets the best effect in our experiment.

In table 3.6 summaries performance on three our own images by using TRNS, ROT

and TR with Google Inception. We observe that combination method overwhelms

and wins in most categories, there is only one exceptional case that TRNS gets the

highest performance with clean vending machine image at 66.71%.

In table 3.7 shows the results on 60 images (includes 30 benign and 30 adversarial

images) from the ImageNet dataset. We observe min, max, median and variance of

probability for recognizing true label and adversarial label with original and adversar-

ial inputs. In Geometric Transformation (TRNS), we analyze 60× 15 = 900 different

cases. When using TRNS, with original inputs, the median of recognition probabili-

ties for true label that is gave by machine learning system reaches to 84.43%. When

the inputs are adversarial, TRNS answered with mean of recognition probabilities

for adversarial label is only 0.6% confidence. In Coordinate Transformation (ROT),

we analyze 60 × 30 = 1, 800 different cases. ROT method also performed perfectly

on both original and adversarial samples. And in Combination (TR), we work with

60 × 15 × 30 = 27, 000 different cases. We observed that TR method outperformed

almost cases to defeat adversarial noises and regain the true label. The median of

recognition probabilities for adversarial label when using TR method is only 0.04%

with adversarial inputs. Meanwhile, with original inputs the median of probabili-

ties for true label is 74.65%. It is obviously that our system can completely defeat

adversarial perturbation and regain true classification with acceptable rate.

Intuitively, Fig A-1 shows the coordinate transformation and geometric translation

on the adversarial perturbation for three our Keyboard, C-Mouse and V-Machine

66

Table 3.5: Combination results on our own images

Image
Translation Original class Targeted class

𝑣𝑖,𝑣𝑗 Min Max Min Max

Keyboard

(0,1) 26.36% 58.44% 0.01% 0.19%
(0,2) 26.76% 65.82% 0.01% 0.07%
(0,3) 29.26% 61.13% 0.01% 0.05%
(1,0) 27.78% 60.26% 0.01% 0.22%
(1,1) 26.16% 57.33% 0.01% 0.16%
(1,2) 28.92% 64.2% 0.01% 0.06%
(1,3) 28.53% 61.69% 0.01% 0.04%
(2,0) 23.85% 57.82% 0.01% 0.25%
(2,1) 26.19% 62.14% 0.01% 0.18%
(2,2) 27.3% 64.44% 0.01% 0.07%
(2,3) 30.79% 61.67% 0.01% 0.05%
(3,0) 28.2% 61.11% 0.01% 0.23%
(3,1) 26.78% 58.1% 0.01% 0.16%
(3,2) 28.29% 55.5% 0.01% 0.08%
(3,3) 29.6% 59.83% 0.01% 0.06%

C-Mouse

(0,1) 6.41% 90.95% 0.0% 0.65%
(0,2) 5.98% 87.82% 0.0% 0.47%
(0,3) 6.32% 69.83% 0.0% 0.21%
(1,0) 7.92% 88.63% 0.0% 1.83%
(1,1) 6.55% 90.91% 0.0% 0.42%
(1,2) 6.23% 93.86% 0.0% 0.41%
(1,3) 4.95% 77.05% 0.0% 0.15%
(2,0) 6.39% 86.09% 0.0% 0.7%
(2,1) 6.95% 90.56% 0.0% 0.29%
(2,2) 5.35% 83.72% 0.0% 0.16%
(2,3) 4.15% 89.0% 0.0% 0.12%
(3,0) 11.56% 82.31% 0.0% 0.36%
(3,1) 3.43% 79.85% 0.0% 0.22%
(3,2) 3.85% 80.86% 0.0% 0.12%
(3,3) 3.96% 90.01% 0.0% 0.12%

V-Machine

(0,1) 2.55% 51.44% 0.01% 2.14%
(0,2) 1.53% 48.13% 0.01% 0.08%
(0,3) 4.53% 47.44% 0.01% 0.44%
(1,0) 2.99% 55.62% 0.01% 1.09%
(1,1) 1.74% 61.7% 0.01% 1.21%
(1,2) 2.3% 62.24% 0.01% 0.78%
(1,3) 6.48% 61.21% 0.0% 0.39%
(2,0) 1.9% 53.28% 0.01% 1.66%
(2,1) 1.16% 55.63% 0.01% 1.2%
(2,2) 1.22% 54.3% 0.01% 0.63%
(2,3) 1.42% 57.37% 0.01% 0.33%
(3,0) 0.97% 50.23% 0.0% 0.75%
(3,1) 0.69% 49.96% 0.01% 0.54%
(3,2) 1.36% 48.41% 0.01% 0.25%
(3,3) 0.84% 63.48% 0.01% 0.33%

67

Table 3.6: Summary performance on our own images

Image
TRNS ROT Combination

Clean Adv Clean Adv Clean Adv
Keyboard 62.01% 5.07% 56.5% 0.22% 65.82% 0.07%
C-Mouse 15.43% 10.4% 92.67% 2.16% 93.86% 0.41%
V-Machine 66.71% 17.2% 55.04% 3.67% 63.48% 0.33%

Table 3.7: Summary performance on ImageNet dataset

Method Cases Input
Probability for True Label Probability for Adv Label

Min Max Median Var Min Max Median Var

TRNS 900
Org 7.98% 99.51% 84.43% 0.13% 0.0% 0.06% 0.01% 0.0%
Adv 0.22% 95.69% 38.58% 2.21% 0.01% 88.15% 0.60% 3.95%

ROT 1,800
Org 1.56% 99.72% 75.71% 9.60% 0.0% 0.07% 0.01% 0.0%
Adv 0.71% 99.69% 53.15% 3.83% 0.0% 28.2% 0.05% 0.0%

TR 27,000
Org 0.38% 99.76% 74.65% 8.76% 0.0% 0.11% 0.01% 0.0%
Adv 0.15% 99.84% 56.27% 5.84% 0.0% 50.14% 0.04% 0.0%

images. In Fig A-1, the first column shows the results when we use the coordinate

transformation and second one is for geometric translation. In the figures in the first

column, we define that the red line illustrates the probabilities that machine learning

recognizes the input as adversarial ostrich and the green line shows for the true

class. We observe that with a very small coordinate transformation, the adversarial

ostrich is completely defeated. In the second column of the figures, the adversarial

ostrich is also defeated by geometric translation, meanwhile this method attains high

probabilities of true classification.

For MNIST dataset, we randomly extract ten digit-0 from the test set for creating

adversarial examples with the target of digit-4. The adversarial digits completely

make the LeNe’s classifier misclassify digit-0 as digit-4. With the same experimen-

tal settings as ImageNet, we also apply TRNS, ROT and combination for defeating

adversarial digits and recovering the clean digits.

We iteratively use the coordinate transformation on the adversarial examples with

𝛼 ∈ [0, 30] and recognize that the perturbations are defeated by this method with

only small value of 𝛼.

For MNIST dataset, we also recognize that the combination method is more pow-

68

erful and effective for defeating adversarial perturbation than single use of TRNS or

ROT. The combination results are shown in table 3.8.

Table 3.8: Summary performance on MNIST

Index
TRNS ROT Combination

Clean Adv Clean Adv Clean Adv
4457 99.96% 0.71% 93.69% 0.33% 99.96% 0.00%
5584 99.13% 3.22% 96.1% 0.01% 99.13% 0.14%
1438 96.65% 4.01% 83.52% 0.27% 97.00% 0.13%
1558 89.63% 9.74% 49.57% 4.96% 89.63% 1.74%
7031 85.22% 1.15% 94.05% 0.12% 85.22% 0.06%
9962 99.36% 6.93% 97.47% 0.09% 99.36% 0.05%
297 98.95% 14.22% 96.38% 0.09% 99.56% 0.09%
5259 99.97% 0.23% 99.24% 0.05% 99.97% 0.00%
4070 99.96% 0.40% 99.09% 0.01% 99.96% 0.00%
4515 99.99% 0.53% 94.65% 1.04% 99.99% 0.00%

Fig A-2 shows the effectiveness of coordinate transformation (ROT) on adversarial

examples. The sub figure besides of each picture shows the change in the probability of

true label (digit 0) with green curve line and adversarial label (digit 4) with red curve

line. The best case is in digit 0 with index 5584. In this best case, the probability

of true label linearly increases with angle of rotation, meanwhile the probability of

adversarial label decreases dramatically and reaches to 0 when angle of rotation is

increased to 5 degree. The worst case is in digit 0 with index 1438. In this worst case,

although the probability of adversarial label dramatically drops from nearly 100% to

under 10% but it still remains and fluctuates around 10%.

3.1.7 Summary for Image Transformation for Detecting Ad-

versarial Examples

Adversarial attack so far is a very serious problem for security and privacy on machine

learning systems. This research work provides evidence that the deep neural networks

can be made more robust to adversarial attacks by giving TRNS, ROT and their

combination transformations to input images. As our theory and experiments, we now

can develop powerful defense methods for adversarial problem. Our experiments on

69

ImageNet and MNIST datasets have not reached the best on all of cases. However, our

results already show that our approach lead to significant increase in the robustness

of deep neural network. Our best performance case (in table. 3.7) on the ImageNet

images shows that it can reduce the classification rate for adversarial example from

99.9% to 0.00%. And we also believe that our findings will be further explored in our

future work.

70

3.2 Image Filters for Detecting Adversarial Exam-

ples

In this section, we introduce new techniques to overcome adversarial examples by

using Image Filters. Our proposed system can automatically detect and classify

adversarial samples and legitimate samples. We assume that most of adversarial per-

turbations are created in high frequencies of image because adversarial examples are

created only respect to loss(𝑥𝑎𝑑𝑣,𝑦𝑎𝑑𝑣), so there are many properly adversarial noises

exist in high frequencies. Base on this assumption, we focus on the way how to reduce

high frequency adversarial noises and still keep other high frequency benign features.

For proving our hypothesis right, first we put a low pass filter layer between adversar-

ial example and target classifier. We observed that the probability of targeted class

from classifier dropped significantly to near zero, meanwhile we regained the recogni-

tion results for the primary class. We will also demonstrate the correctness of these

implementations into theory proof in Sec 3.2.1. Based on the previous observation,

we proposed the new end-to-end system for automatically detecting adversarial by

design a sieve layer between input and deep neural network to stick suspicious noises.

In parallel with that process, we feed the un-sieved input to classifier and mark the

highest confidence class as an anchor. We compare the probability of anchor and

sieved input from classifier based on a specified fixed threshold to make a decision

that one is adversarial or benign. The our key idea is depicted in Fig. 3-4.

The main contributions of this research are as follows:

∙ We investigated and analyzed attack approaches for crafting adversarial exam-

ples. We showed attack approaches along their different strategies to provide

an intuitive overview of these attack methods.

∙ We investigated the modern defense approaches and their variants in adversarial

settings. We assume most of adversarial perturbations are created in high fre-

quencies. After implementing many experiments respect to theory framework,

we confidently confirm our hypothesis right.

71

Figure 3-4: Our automated detection system for adversarial examples by using image
filters

∙ We created new automated detection method for adversarial examples based on

a thorough analysis of observations obtained from many experimentation and

theoretical framework. Our approach is different from other previous research

works that they usually only have experimental steps based on the original

hypothesis. Our proposed approach is successfully applied two types of com-

mon datasets that are a small-scale dataset (MNIST) and a large-scale dataset

(ImageNet). Our defense method worked well to classify adversarial examples

and legitimate samples. Moreover, in some cases it recovered the deep learning

model’s classification with high accuracy rates.

3.2.1 Detection phase

We create new benchmark dataset for our detection system by combination of benign

images and adversarial images that we created in attack phase. We assume that

adversarial noises are high frequencies feature on images, so we will consider the way

to remove them from high frequency domain on images while still keep all features in

low frequency area. There are some common algorithms that are applied to reduce

the noises from images for further processing such as classification. In this work, we

72

investigate two most known filters in image denoising field are linear and non-linear

filters. Let consider an example, by constructing a new array that has the same size

as the specified image. Fill each location of this new array with a weighted sum

of the pixel values from the locations surrounding the corresponding location in the

image, using the same set of weights each time. The result of this procedure is shift-

invariant —meaning that the value of the output depends on the pattern in an image

neighbourhood, rather than the position of the neighbourhood and linear meaning

that the output for the sum of two images is the same as the sum of the outputs

obtained for the images separately. The procedure itself is known as linear filtering.

This process helps us to smooth noises in images. And one of famous linear filter is

Gaussian filter that is defined as equation:

𝐺𝜎(𝑖, 𝑗) =
1

2𝜋𝜎2
𝑒−

𝑖2+𝑗2

2𝜎2 (3.29)

Where 𝑖, 𝑗 is denoted as input’s coordinate signal and 𝜎 is standard deviation of the

Gaussian distribution. And an alternative approach to remove noises is to think of a

filter as a statistical estimator. In particular, the goal here is to estimate the actual

image value at a pixel, in the presence of noisy measurements. This view leads us to

a class of filters that are hard to analyze, but can be extremely useful. Smoothing an

image with a symmetric Gaussian kernel replaces a pixel with some weighted average

of its neighbours. If an image has been corrupted with stationary additive zero-

mean Gaussian noise, then this weighted average gives a reasonable estimate of the

original value of the pixel. The expected noise response is zero, and the estimate has

better behaviour in terms of spatial frequency than a simple average. However, if the

image noise is not stationary additive Gaussian noise, difficulties arise. In particular,

consider a region of the image which has a constant dark value and there is a single

bright pixel due to noise— smoothing with a Gaussian will leave a smooth, Gaussian-

like, bright bump centered on this pixel. The problem here is that a weighted average

can be arbitrarily badly affected by very large noise values. Thus, we can make the

bright bump arbitrarily bright by making the bright pixel arbitrarily bright perhaps as

73

result of a transient error in reading a memory element. Estimators that do not have

this most undesirable property are often known as robust estimates. The best known

robust estimator involves estimating the mean of a set of values using its median.

A median filter is specified by giving some form of neighbourhood shape (which can

significantly affect the behaviour of the filter). This neighbourhood is passed over the

image as in convolution, but instead of taking a weighted sum of elements within the

neighbourhood, we take the median. If we write the neighbourhood centered at (𝑖,𝑗)

so the filter can be described by:

𝑥𝑖𝑗 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑋𝑢𝑣|𝑋𝑢𝑣 ∈ N𝑖𝑗) (3.30)

Where 𝑋𝑢𝑣 is denoted as the neighbourhood points of 𝑥𝑖𝑗. By smoothing pixels in

image, we can leverage adversarial noises if they are exist. In case without adversarial

noises, smoothing pixels does not affect the input image quality too much so target’s

classifier still recognizes the right label. We name this process is sieve process (noted

by green arrow in Fig. 3-4).

Our proposed detection system has two parallel processes include sieve process and

anchor process. Sieve process will leverage the high frequencies in input processing

while anchor process will transfer input directly to machine learning model. The

probability of the highest confidence class from machine learning model will be sticked

as anchor, and we use this anchor class to tracking the oscillation of the class similar

to anchor class on the sieve process. If the differentiation of probability 𝑝 of anchor

and sieve is greater than a fixed Θ threshold, our system will confidently point out

it as adversarial and vice versa. Our system is defined in algorithm 3. Where: 𝜅

is denoted for kernel size, 𝑓 is machine learning function to produce probabilities of

predicted class, 𝑠 is sieve function. We denote the sieve function created based on

Gaussian filter is Detection System based on Gaussian - DSG and another one is

Detection System based on Median - DSM.

74

Algorithm 3: Automated Detection System of Adversarial Examples with
High Frequency Sieve
input : 𝑋,Θ, 𝑠, 𝑓
output : 0, 1
// 0: benign; 1: adversarial

parameter: 𝜅 = [(3× 3); (5× 5)]

1 for 𝑥 in 𝑋 do
2 𝑎𝑛𝑐ℎ𝑜𝑟𝑥 ← 𝑥
3 𝑠𝑖𝑒𝑣𝑒𝑥 ← 𝑥
4 𝑠𝑖𝑒𝑣𝑒𝑥 ← 𝑠(𝑠𝑖𝑒𝑣𝑒𝑥, 𝜅, 𝜎)
5 𝑝(𝑎𝑛𝑐ℎ𝑜𝑟𝑦) ← 𝑓(𝑎𝑛𝑐ℎ𝑜𝑟𝑥)
6 𝑝(𝑠𝑖𝑒𝑣𝑒𝑦) ← 𝑓(𝑠𝑖𝑒𝑣𝑒𝑥|𝑎𝑛𝑐ℎ𝑜𝑟𝑦)
7 if diff(𝑝(𝑎𝑛𝑐ℎ𝑜𝑟𝑦), 𝑝(𝑠𝑖𝑒𝑣𝑒𝑦)) > Θ then
8 return 1
9 else
10 return 0
11 end

12 end

3.2.2 Datasets

In this work, we consider two common benchmark datasets for classification task

include MNIST and ImageNet.

Setup for MNIST

MNIST dataset [57] includes 70,000 gray images of hand-written digits from 0 to 9.

It is separated into two parts including 60,000 training images and 10,000 testing

images. Each image in MNIST is 28 × 28 pixels with each pixel is encoded by 8-bit

grayscale. We randomly extract 200 images of digit “0" from 10,000 testing images.

From each of 200 images of digit “0", we create nine different adversarial images target

to the rest digit (from 1 to 9). Finally we create new benchmark dataset include 2,000

images (200 benign images and 1,800 adversarial images).

Setup for ImageNet

We consider the ImageNet dataset [96] that is a very large database designed for

use in visual object recognition research. The original ImageNet includes more than

75

14 millions images in 20,000 categories with a typical category, such as “computer

mouse” or “vending machine”, consisting of several hundred images. The machine

learning model that we use is Google Inception V3 [108] that was trained with 1,000

common categories ImageNet. We randomly select 1,000 testing images exclude image

of “ostrich”. This selection of targeted class does not compromise the generality of

our system. By applying FGSM and PGD method to craft adversarial images target

to “ostrich”, we generate new 2,000 adversarial images. We combine them together to

form new benchmark repository including 3,000 images for our experiment.

3.2.3 Implementation

Adversarial examples recently attracted a lot of interest from researchers however

there is still no public benchmark dataset for evaluating the robustness of defense

system. So the purpose of attack phase is to create a new benchmark dataset that

evaluates the detection capabilities of our detection system.

In MNIST dataset, from 200 random images of digit “0”, we use FGSM method

to craft adversarial images with targeted class from 1 to 9. The number of iteration

(epochs) in FGSM is 1,000. Afterward, we combinate them to form a benchmark

dataset for evaluating our detection system. The proposed detection system knows

true label of input and we only provide input after that our system automatically

processes and returns decision that the input is adversarial or benign.

In ImageNet dataset, from 360 random testing images without “ostrich”, we use

FGSM, PGD, CW and EAD to craft adversarial images with targeted class is “ostrich”.

The number of iteration (epochs) in FGSM, PGD, CW and EAD is 500 times. In

Fig. 3-5, we show five samples from 390 random picked images that we use for crafting

adversarial examples. In the first row, there are original images (or we usually call

as benign images) includes dish, hammerhead, mosque, oscilloscope and parachute.

The probability row shows the highest probability of class in class name in brackets.

We finally create 1,800 images including 360 original images and 1,440 adversarial

images.

In sieve process, we set kernel sizes for Gaussian and Median filter are (3× 3) and

76

(5 × 5). We observe the change of probability of anchor before and after applying

filters to make a decision base on a given threshold.

Figure 3-5: Attack Phase Samples.

3.2.4 Results

We compare our result with Xu et al. [120]. Our system is more convenient that Xu’s

system in either detection accuracy and easy-to-setup, our system consistently uses a

fixed threshold while Xu’s system has to adapt a variety of threshold values. We also

report our system’s performance by using F1-scores metric. Our detection system

based on Gaussian named as DSG and another one is Detection System based on

Median named as DSM.

We observe and analyze a typical case with image of oscilloscope. From benign

oscilloscope image with probability is around 99.7%, we created two adversarial os-

trich by using FGSM and PGD method (Fig. 3-5). Afterward, we used DSG and

77

DSM function for sieving adversarial ostrich noises and regain oscilloscope features.

Fig. 3-6 has expressed probabilities change dramatically on targeted ostrich and legit-

imate oscilloscope when processed by DSG function. This observation confirms our

assumption that adversarial noises are high frequencies and by adapting low pass filter

in our model, we can proposed a powerful detection model for adversarial examples.

(a) Observation on probabilities of Oscillo-
scope label

(b) Observation on probabilities of Oscillo-
scope label

Figure 3-6: Adversarial ostrich image (true class: Oscilloscope) suffers to our sieve
process

Adversarial Detection results on MNIST dataset are summated in Table 3.9. In

Table 3.9, “-” means we do not have information from the other research work. Al-

though the number of images in comparison is the same, the way we create test set

is more challenge than Xu et al. [120]. Xu kept a balanced dataset by creating 1,000

legitimate images and 1,000 adversarial examples while we created 1,800 adversarial

images from 200 legitimate inputs so our model had to cope with imbalanced [107]

dataset in our experiment. Our detection rates are very competitive and performed

better than Xu’s work. Besides that, our automatic detection system used a fixed

threshold for all settings while Xu’s work used a variety of threshold respect to set-

tings. In the implementation results on MNIST dataset, the DSG method achieves

the best performance on detection rate at 99.9% while Xu’s the best result is only at

98.2%.

In ImageNet dataset, we observed our detection rates reached the highest score for

comparing to Xu’s work. In Table 3.10 also shows that the number of files we used in

this implementation is larger than Xu et al. and we still keep our benchmark dataset

is imbalance for evaluating our proposed model. Our detection rate achieved around

78

Table 3.9: Detection Rate on MNIST dataset

Our Method Xu et al. [120]
DSG DSM Bit-Depth Smoothing Best-Joint

No. Files 2,000 2,000 2,000 2,000 2,000
Threshold 0.1 0.1 0.0005 0.0029 0.0029
True Positive 1799 1796 - - -
True Negative 198 195 - - -
False Positive 2 5 - - -
False Negative 1 4 - - -
Accuracy 0.999 0.996 - - -
Precision 0.999 0.997 - - -
Recall 0.999 0.998 0.903 0.868 0.982
F1 score 0.999 0.998 - - -

Table 3.10: Detection Rate on ImageNet dataset

Our Method Xu et al. [120]
DSG DSM Bit-Depth Smoothing Best-Joint

No. Files 1,800 1,800 1,800 1,800 1,800
Threshold 0.9 0.9 1.4417 1.1472 1.2128
True Positive 1,380 1,433 - - -
True Negative 356 350 - - -
False Positive 4 10 - - -
False Negative 60 7 - - -
Accuracy 0.964 0.991 - - -
Precision 0.997 0.993 - - -
Recall 0.958 0.995 0.751 0.816 0.859
F1 score 0.997 0.994 - - -

95.8% with DSG and 99.5% with DSM. DSM worked perfectly to detect all adversarial

examples while Xu’s the best performance is only 85.9% detection accuracy rate. We

use a fix threshold at 0.9 in both DSM and DSG methods. We recognize that the

DSM works better than DSG to detect adversarial image but worse to recognize the

original images. From these observation, we find out that the DSM is very strong

method to remove the features on the high-frequency and in some case it also remove

the importance features that makes false positive is higher than DSG method.

79

3.2.5 Summary for Denoising Detection System

In this section, we investigated the high frequencies in the adversarial examples. We

assume that adversarial noises are high frequencies feature on images, so we will

consider the way to remove them from high frequency domain on images while still

keep all features in low frequency area. There are some common algorithms that

are applied to reduce the noises from images for further processing such as classifi-

cation. In this work, we investigate two most known filters in image denoising field

are linear (Gaussian filter) and non-linear filter (Median filter). Based on assumption

and theory framework, we demonstrated the effectiveness of low pass filter in remove

high frequency adversarial noises. From this observation we proposed a automated

detection system for adversarial examples.

On MNIST dataset, we use FGSM to create adversarial examples and our de-

tection system achieved detection accuracy rate up to 99.9% with DSG method and

99.8% with DSM method.

On ImageNet dataset, we use FGSM, PGD, CW and EAD methods to create

adversarial examples. Our detection system also reached to 99.5% detection accuracy

rate with DSM method and 95.8% with DSG method.

From our experimental results, we recognized that Median filter is better than

Gaussian filter for defeating adversarial noises although Median filter will take more

time than Gaussian in computation. In evaluation of our system, we setup the new

benchmark datasets are more challenge than [120, 62] when they used images from

training set for evaluating rather than testing set, while we use testing images for

implementation. We also challenged our model by keeping imbalanced datasets and

our detection system still reached state-of-the-art performance. Another important

contribution in this work is that we not only defeated adversarial noises, but also our

systems regained the legitimate class from effectiveness of adversarial examples.

80

3.3 Geometric Transformation and Denoiser for iden-

tifying Adversarial Examples

In this section, we describe the state-of-the-art automatic detection system that de-

tects and distinguishes between adversarial and legitimate samples from unknown

inputs. We assume that most of the adversarial noises are crafted with only respect

to deceive a classifier and imperceptible to perceive by a human. By adopting slightly

the pixel values of input image toward to new targeted label, adversarial attack meth-

ods are inattentive to spatial constraints from the original image, and it leads to drop

adversarial noises on the high-frequency domain. Moreover, most of the adversarial

attack methods based on gradient descent to create malicious patterns and optimize

loss function between legitimate input with a targeted label, it tries to find the best

candidate with the targeted classifier. This leads to a variant of overfitting when

fine-tuning the important features of the original image. Besides, the image classifi-

cation systems based on the deep learning are very sensitive to transformation so we

deeply investigate how to use transformation to break the effectiveness of adversarial

examples on the classification systems.

To prove our assumption, we first set up a transform layer and a denoiser layer

between the adversarial image and a classifier. We observe the probabilities of outputs

and analyze the changing of probabilities of the original label and adversarial label

before and after using layers. From those observations, we propose a state-of-the-

art automatic adversarial identification system with three parallel layers between

input images and a classifier. Three parallel layers include a forward layer, transform

layer and denoiser layer. The forward layer’s role is forwarding the unknown input

to the classifier. The transform layer and denoiser layer perform on the unknown

input to deform and remove the adversarial features in the high-frequency band. The

observed outputs from the classifier are the labels with the highest probabilities to

form into a vector. We set up a decision system to evaluate the vector to decide which

unknown input is adversarial or benign. Our proposed model is described in Fig. 3-7

81

Algorithm 4: Automatic Identification System with Image Transformation

Layers
input : 𝑥, 𝑓 , 𝐿, 𝐺𝑅, 𝐺𝑇 , 𝐺𝑇&𝑅

output : 1: adversarial input, 0: clean input

1 𝑙𝑚𝑎𝑟𝑘𝑒𝑑 ← 𝑓(𝑥) // generating a marked label

2 if GR then

3 for 𝑖 in range(5,20) do

4 𝑎𝑛𝑔𝑙𝑒 ← i * 𝜋/180

5 𝑥𝐺𝑅𝑖 ← 𝐺𝑅(𝑥, 𝑎𝑛𝑔𝑙𝑒) ; 𝑙𝑖 ← 𝑓(𝑥𝐺𝑅𝑖); 𝐿 ← 𝑙𝑖

6 end

7 else if GT then

8 for 𝑖 in range(5,20) do

9 for 𝑗 in range(5,20) do

10 𝑣𝑖 ← 𝑖; 𝑣𝑗 ← 𝑗; 𝑥𝐺𝑇𝑖 ← 𝐺𝑇 (𝑥, 𝑣𝑖, 𝑣𝑗)

11 𝑙𝑖 ← 𝑓(𝑥𝐺𝑇𝑖); 𝐿 ← 𝑙𝑖

12 end

13 end

14 else

15 for 𝑖 in range(5,20) do

16 for 𝑗 in range(5,20) do

17 𝑣𝑖 ← 𝑖; 𝑣𝑗 ← 𝑗

18 𝑥𝐺𝑇𝑖𝑗 ← 𝐺𝑇 (𝑥, 𝑣𝑖, 𝑣𝑗)

19 for 𝑞 in range(5,20) do

20 𝑎𝑛𝑔𝑙𝑒 ← 𝑞 * 𝜋/180

21 𝑥𝐺𝑅𝑞 ← 𝐺𝑅(𝑥𝐺𝑇𝑖𝑗, 𝑎𝑛𝑔𝑙𝑒)

22 𝑙𝑖 ← 𝑓(𝑥𝐺𝑅𝑞); 𝐿 ← 𝑙𝑖

23 end

24 end

25 end

26 end

82

FORWARD TRANSFORM DENOISER

DNNs

ADVERSARIAL

BENIGN

l0 l1 l2 ln-1 ln

X0 X1 X2 Xn-1 Xn

Figure 3-7: Adversarial Examples Identification System

In this model, we set up three layers simultaneously between the input and the

classifier. The forward layer is passed directly into the classifier. Transform layer

83

using image transformation algorithm (geometric rotation, geometric translation, and

combination). The Denoiser layer uses algorithms to eliminate noise in the high-

frequency domain. Afterward, the data has been processed through these three layers,

from each input data we have a set of data 𝑋 = {𝑋0, 𝑋1, ..., 𝑋𝑛−1, 𝑋𝑛}. These data

will be the input of the classifier. The outputs of the classifier are labels with the

highest probability 𝑙 = {𝑙0, 𝑙1, ..., 𝑙𝑛−1, 𝑙𝑛}. Based on the set of labels 𝑙, we use a

similarity function to compare the similarities of the elements in the set 𝑙 to decide

whether the input data is adversarial or benign. Our system performs to analyze

adversarial data automatically and there is no need to set a threshold value to make

a final decision. The filter layer places the high-frequency components in the input

processing while the forward layer transfers the input directly to the target classifier.

The highest-confidence class from the classifier is assigned as the marked label. The

filter process then tracks the labels similar to the marked label. If the marked label

is equal to all filtered labels, our system confidently determines the input as benign,

but in the case, where are more than two different marked labels that are different

from the marked label, the detection system points out it as an adversarial example.

Our system proceeds by algorithm 3, where x defines the input image, 𝐿 is filtered

labels, 𝑙𝑚𝑎𝑟𝑘𝑒𝑑 is marked label, 𝜅 denotes the kernel sizes, 𝑓 is a machine learning

function that computes the predicted label with the highest probability, and 𝑠 is the

filter function. The filter function based on the Gaussian filter is called the label-

based identification model based on Gaussian (LIMG); the other filter function is our

identification model based on Median (LIMM). We set the kernel size in range [3×3,

5×5].In the transform layer (algorithm 4), we define three main functions include

GR, GT, and GT&R that stand for geometric rotation, geometric translation and

a combination of them, respectively. For GR method, we chose the rotation angle

in range [5,20]. In GT method, we select the translation in range[5,20]. For GT&R

method, the first we apply the GT, after that we use GR on the image input. The

composite model that combines transform and denoiser layers we call CMTD.

84

3.3.1 Evaluation Metrics

We use the some commonn metrics for evaluating our implementation as below.

∙ True Positive (TP) is an outcome where the model correctly predicts the

positive class.

∙ True Negative (TN) is an outcome where the model correctly predicts the

negative class.

∙ False Positive (FP) is an outcome where the model incorrectly predicts the

positive class.

∙ False Negative (FN) is an outcome where the model incorrectly predicts the

negative class.

∙ Precision or positive predictive value is the proportion of positive and negative

results and equal to TP/(TP+FP).

∙ Recall or sensitive or true positive rate measures the proportion of actual pos-

itives that are correctly identified and it is defined as TP/(TP+FN).

∙ Accuracy is the closeness of the measurements to a specific value, and it is

defined as (TP+TN)/(TP+TN+FP+FN).

∙ F1 score is a measure of a test’s accuracy, and it equals to 2*(Precision *

Recall)/(Precision + Recall).

3.3.2 Implementation and Settings

In this section, we describe the setup and settings of the proposed automatic identifi-

cation models. In general, we use two benchmark data sets: small scale MNIST and

large scale ImageNet to build synthesized data sets. In this study, we use the state-

of-the-art deep neural network is Google Inception V3 [108] as a victim classifier to

create adversarial images as well as evaluating the identification results because the

85

problem we focus on is the white-box manner. In the creation of adversarial exam-

ples, we use four attack methods: FGSM, PDG, CW_L2, and EAD. In the transform

layer, we use three methods of GT, GR, and GTR. In the denoiser layer, we use two

methods of LIMG, LIMM. The proposed composite model uses the transform and

denoiser layers. The test was performed on Intel (R) Core (TM) i9-9900X 20 CPUs

3.50 GHz, 64 GB Memory, NVIDIA GeForce RTX 2080Ti 11GB.

Setup of MNIST

The MNIST dataset [57] includes 70,000 gray images of hand-written digits ranging

from 0 to 9. It is separated into 60,000 training images and 10,000 testing images.

A single MNIST image is composed of 28 × 28 pixels, and is encoded by an 8-bit

grayscale. We randomly extract 200 images of the digit “0” from the 10,000 testing

images. From each of these 200 images, we create nine adversarial images targeting

the remaining digits (1-9). Finally, we create a new synthesized benchmark dataset

of 2,000 images (200 benign images and 1,800 adversarial images).

Setup of ImageNet

We consider the ImageNet dataset [96] that is a very large database created for

using in many tasks such as image classification, and object detection. The original

ImageNet includes more than 14 million images in 20,000 categories with a typical

category, such as “oscilloscope” or “ostrich”, consisting of several hundred images. The

machine learning model that we use is Google Inception V3 [108] that was trained

with 1,000 common categories ImageNet. We randomly select 360 testing images. By

applying FGSM, PGD, CW_L2 and EAD methods to craft adversarial images target

to randomly chosen labels, we generate new 1,440 adversarial images. We combine

them together to form a new benchmark repository including 1,800 images for our

experiment. Although adversarial examples have recently attracted much interest

from researchers, a public benchmark dataset for evaluating the performance and

quality of defense systems remains lacking. In the attack phase of our system, we

thus created a new benchmark dataset for evaluating the detection capabilities.

86

3.3.3 Results

(a) FGSM Adversarial Image, 99.99% as os-

trich label

(b) PGD Adversarial Image, 99.90% as ostrich

label

(c) CW_𝐿2 Adversarial Image, 99.85% as os-

trich label

(d) EAD Adversarial Image, 99.89% as ostrich

label

(e) Original Image, 99.35% as the ground

truch is a oscilloscope label

Figure 3-8: An example: Attack phase by using FGSM, PGD, CW_L2 and EAD
methods with targeted 𝑜𝑠𝑡𝑟𝑖𝑐ℎ label

87

We compare our results with Xu et al. [120]. Our system is more convenient than

Xu’s system in either detection accuracy and easy-to-setup, our system does not use

a threshold for making the decision while Xu’s system has to carefully choose a set

of threshold values. Our system only setup the paramters for the transform layer

and denoiser layer such as kernel sizes, rotation angles, and translation angles. All of

these parameter’s values are selected based on our observation in the implementation

results. We also report our system’s performance by using the F1-scores metric. We

observe and analyze a typical case with an image from the ImageNet dataset. In Fig-

ure 3-8, from a random image in the ImageNet dataset, the classifier system produces

the highest probability of 99.7% of the 𝑜𝑠𝑐𝑖𝑙𝑙𝑜𝑠𝑐𝑜𝑝𝑒 label. We use four different meth-

ods FGSM, PGD, CW_L2 and EAD to create adversarial images with targeted labels

as a 𝑜𝑠𝑡𝑟𝑖𝑐ℎ label by randomly selected from 1,000 labels in the ImageNet dataset.

88

(a) Observation on probability of targeted la-

bel when using GT method

(b) Observation on probability of targeted la-

bel when using GR method

(c) Observation on probability of targeted la-

bel when using GT&R method

Figure 3-9: Our proposed Model 1 defeats the adversarial perturbation’s affect

Figure 3-9 shows the changing of probability classification for the targeted label

before and after using the transform layer. We observe that the probabilities of the

targeted labels suddenly drop after using the transform layer. In figure 3-9.a, when

the angle value is zero (meaning GT is not used), the probability of the targeted label

is close to 1.0 for adversarial images, but for blue lines (the observation on the benign

image), the probability is 0.0. However, when the angle value increases to 5 degrees,

we can see that the probability of targeted labels on adversarial images decreases

to approximately 0.0 (exclude PGD adversarial image in green line). And this is

maintained when increasing the value of the angle up to 10 degrees for adversarial

examples created using the FGSM, PGD and CW_L2 methods. The probabilities of

89

the targeted label tend to increase in the range [10,20] when using the GT method in

this case. In figure 3-9.b, the GR method works more effectively than the GT method

when the angle value increases from 5 to 20 degrees, the probability of targeted

label decreases and remains at 0.0 for all adversarial images created by four attack

methods. In figure 3-9.c, the GT&R method also works well when the effect of the

adversarial perturbation on the classifier system has been eliminated. This is a very

important observation that we decide on the range of angles of transformation in our

identification system in range [1, 5] in the percentage of an input image.

(a) Input: FGSM Adversarial Image (b) Input: PGD Adversarial Image

(c) Input: CW_L2 Adversarial Image (d) Input: EAD Adversarial Image

(e) Input: Original Image

Figure 3-10: Observation on the probabilities of the ground truth label with GT&R
method

90

Figure 3-10 shows the observations on the probabilities of the ground truth labels

when we use the GT&R method. We can observe that in some cases (such as Figure 3-

10.c and Figure 3-10.e), the probabilities of the ground truth label are even better

than without GT&R.

(a) Input: FGSM Adversarial Image (b) Input: PGD Adversarial Image

(c) Input: CW_L2 Adversarial Image (d) Input: EAD Adversarial Image

(e) Input: Original Image

Figure 3-11: Observation on the probabilities of the targeted label with GT&R
method

Figure 3-11 shows observations of the probabilities of a targeted label change

when the GT&R method is applied. It is obvious to see that in many cases the

GT&R method suppresses the probability of targeted labels to around 0.0.

91

(a) Observation on probability of ground truth

label when using GT method

(b) Observation on probability of ground truth

label when using GR method

(c) Observation on probability of ground truth

label when using GT&R method

Figure 3-12: Our proposed Model 1 regain the true recognition

Figure 3-12 shows the probability classification results for the ground truth label

are stable when input is the original image after and before using the transform layer.

On the other hand, probability classification for the ground truth label increased

dramatically when inputs are adversarial images after using transform. Figure 3-12.a

shows the probability of ground truth label when the input images are adversarial.

These probabilities are recovered when the angle value increases to 5 degrees. But

when the angle value increases more, the probabilities tend to go down, excluding the

CW_L2 adversarial image. In Figure 3-12.b, we can observe that the GR method

works more effectively than the GT method when the probabilities of the ground

truth label increase steadily with the increment in angle value. In Figure 3-12.c, the

92

GT&R method achieved slightly better results when the probabilities of the ground

truth labels increased close to the baseline. This observation confirms our assumption

that adversarial perturbations are weak to our proposed model and by adapting the

transform layer in our model, we can propose a powerful automatic identification

model for adversarial examples.

(a) Probabilities of ground truth label with

LIMG method

(b) Probabilities of targeted label with LIMG

method

(c) Probabilities of ground truth label with

LIMM method

(d) Probabilities of targeted label with LIMM

method

Figure 3-13: Adversarial examples suffers to our first proposed model (LIMG +
LIMM)

Next, this is followed by empirical results using the LIMG and LIMM methods.

Figure 3-13 shows the observations on the probabilities of the ground truth and

the targeted label. In Figure 3-13.a and 3-13.b, both methods help the classifier to

increase the probability of ground truth when we increase the kernel size from (3×3)

to (5× 5). In contrast, the probability of targeted labels also decreases as the kernel

size increases as are depicted in Figure 3-13.b and 3-13.d.

93

Figure 3-14: Our observation on original 𝑜𝑠𝑐𝑖𝑙𝑙𝑜𝑠𝑐𝑜𝑝𝑒 image and adversarial 𝑜𝑠𝑡𝑟𝑖𝑐ℎ
images that created by FGSM [31], PGD [70], CW_𝐿2 [14], and EAD [16] methods
and when we use LIMG and LIMM method. First row, percentage values illustrate
classification rates for the ground truth label. Other rows, percentage values are
classification rates for the targeted label.

Figure 3-14 depicts the experimental results with the original image of 𝑜𝑠𝑐𝑖𝑙𝑙𝑜𝑠𝑐𝑜𝑝𝑒

and the targeted label of 𝑜𝑠𝑡𝑟𝑖𝑐ℎ when the LIMG and LIMM methods are applied.

In the first row, the percent values represent the probabilities of the oscilloscope

label. In the other rows, the percent values show the probabilities of the ostrich label.

Obviously, when the probability of the 𝑜𝑠𝑐𝑖𝑙𝑙𝑜𝑠𝑐𝑜𝑝𝑒 label decreases, the probability

of the 𝑜𝑠𝑡𝑟𝑖𝑐ℎ label increases and vice versa. Figure 3-14 shows both the LIMG and

LIMM methods perfectly to remove the adversarial noises with any kernel sizes in

Gaussian and Median filters.

94

Table 3.11: Detection Rate on MNIST dataset

Our Method Xu et al. [120]

GT GR GT&R LIMG LIMM CMTD Bit-D Best-Joint

No. Files 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000

Threshold NA NA NA NA NA NA 0.0005 0.0029

TP 1,767 1,786 1,775 1,786 1,776 1,799 - -

TN 174 199 171 199 182 156 - -

FP 26 1 29 1 18 44 - -

FN 33 14 25 14 24 1 - -

Accuracy 0.971 0.993 0.973 0.993 0.979 0.978 - -

Precision 0.985 0.999 0.984 0.999 0.999 0.976 - -

Recall 0.982 0.992 0.986 0.992 0.987 0.999 0.903 0.982

F1 score 0.984 0.996 0.996 0.996 0.988 0.988 - -

Table 3.11 and 3.12 summarize the empirical results of our models with Xu et

al [120]. On the MNIST dataset (Table 3.11), the CMTD method achieves the best

detection accuracy rate at 99.9%. However, in general, GT&T and LIMG methods

have the better results on F1 score at 99.6% to compare with 98.8% from CMTD

method. On the ImageNet dataset (Table 3.12), the CMTD method also has the

best performance in detection accuracy rate at 99.9%. But with F1 score, the GT&T

method is slightly better than the CMTD method at 97.8%. In general, it is obvious

to see that our proposed CMTD method (figure 3-7) has the best result in identifying

adversarial images with the rate of 99.9% in both MNIST and ImageNet datasets.

The ’-’ notation in the table means there is no information from Xu et al. The

methods we propose do not need to set threshold parameters like Xu’s work [120], so

the installation and deployment are much faster and more efficient. In addition, we

also evaluate our models with other indicators such as accuracy, precision, recall and

F1 score that also reached the highest value of 99.6% on MNIST dataset and 97.8%

on ImageNet dataset.

95

Table 3.12: Detection Rate on ImageNet dataset

Our Method Xu et al. [120]

GT GR GT&R LIMG LIMM CMTD Bit-D Best-Joint

No. Files 1,800 1,800 1,800 1,800 1,800 1,800 1,800 1,800

Threshold NA NA NA NA NA NA 1.4417 1.2128

TP 1,362 1,390 1,419 1,395 1,434 1,439 - -

TN 343 337 318 319 294 289 - -

FP 17 23 42 41 66 71 - -

FN 78 50 21 45 6 1 - -

Accuracy 0.947 0.959 0.995 0.952 0.960 0.960 - -

Precision 0.988 0.984 0.971 0.971 0.956 0.953 - -

Recall 0.946 0.965 0.985 0.969 0.996 0.999 0.751 0.859

F1 score 0.966 0.974 0.978 0.970 0.976 0.976 - -

3.3.4 Summary for combination of Image Transformation and

Filters

In this section, we investigated the defensive strategies for the deep neural networks

to the adversarial examples by combining image transform and filters. Based on the

assumption and theory framework, we demonstrated the effectiveness of geometric

transform and frequency domain in removing adversarial noises. From this obser-

vation, we proposed an automated detection system for adversarial examples. We

obtained up to 99.9% detection rate on both MNNIST and ImageNet datasets. Our

approach is different from related works that we observe the effectiveness of geomet-

ric transform and frequency changing on adversarial examples first. Afterward, based

on our assumption, theory framework and observation we invented a powerful au-

tomatic identification system for distinguishing adversarial examples and legitimate

images without threshold setup. Moreover, we explored the best parameters in image

transformation and filters for removing the adversarial features. Another important

96

contribution of our work is that our proposed methods not only defeated adversarial

noises but also in some cases our systems regained the ground truth label recognition.

97

3.4 Evaluating the robustness of adversarial pertur-

bation against Image Filters

The superiority of deep learning performance is threatened by safety issues for itself.

Recent findings have shown that deep learning systems are very weak to adversarial

examples, an attack form that was altered by the attacker’s intent to deceive the

deep learning system. There are many proposed defensive methods to protect deep

learning systems against adversarial examples. However, there is still lack of principal

strategies to deceive those defensive methods. Any time a particular countermeasure

is proposed, a new powerful adversarial attack will be invented to deceive that coun-

termeasure. In this study, we focus on investigating the ability to create adversarial

patterns in search space against defensive methods that use image filters. Experimen-

tal results conducted on the ImageNet dataset with image classification tasks showed

the correlation between the search space of adversarial perturbation and filters. These

findings open a new direction for building stronger offensive methods towards deep

learning systems.

3.4.1 Search Space on Attacking Phase

We consider the white-box targeted attack settings, where the attacker can fully

access the model type, model architecture, all trainable parameters, etc., and the

adversary aims to change the classifier’s prediction to some specific target class. The

attackers use available information to identify the feature space where the model is

vulnerable or try to find the victim decision boundaries. Then the victim model

is exploited by altering a clean input by using adversarial example methods. To

create adversarial samples that are misclassified by the machine learning model, an

adversary with knowledge of the model’s classifier 𝑓 and its trainable parameters. In

this work, we use FGSM [31] method for crafting adversarial examples. We define

classifier function 𝑓 : R𝑛 →
[︁
1...𝑘

]︁
that maps image pixel value vectors to a particular

label. Then we assume that function 𝑓 has a loss function 𝐿 : R𝑛×
[︁
1...𝑘

]︁
→ R. For

98

an input image 𝑥 ∈ R𝑛 and target label 𝑦 ∈
[︁
1...𝑘

]︁
, our system aims to solve the

following optimization problem: 𝛿 + 𝐿(𝑥 + 𝛿, 𝑦) subject to 𝑥 + 𝛿 ∈
[︁
0, 1
]︁𝑛

, where

𝛿 is an adversarial perturbation that we aim to add it to the original image 𝑥. We

have to note that this function method would yield the solution for 𝑓(𝑥) in the case

of convex losses, however, the neural networks are non-convex so we end up with an

approximation in this case. In this case, we use the output of the second-to-last layer

logits for calculating the gradient instead of using the output of the softmax function.

Our main purpose to decide the size of adversarial perturbation, it means the search

space of adversarial perturbation. We consider the norm operation to determine the

size of the adversarial noises. Mathematically, a norm is a total size or length of all

vectors in a vector space or matrices. For simplicity, we can say that the higher the

norm is, the bigger tha value matrix or vector. Formally, the 𝑙𝑝-norm of vector x is

defined as: ‖𝑥‖𝑝 = 𝑝
√︀∑︀

𝑖 |𝑥𝑖|𝑝, where 𝑝 ∈ R. This is a 𝑝𝑡ℎ-root of a summation of all

elements to the 𝑝𝑡ℎ power is what we call a norm. The interesting point is even though

every 𝑙𝑝-norm is all look very similar to each other, their mathematically properties

are very different and thus their application are dramatically different when we use

to create the adversarial examples. In this work, we consider three common norm

methods: 𝑙1-norm, 𝑙2-norm, and 𝑙∞-norm for evaluating the size of the search space

of adversarial perturbation.

l1-norm. From the definition of 𝑙𝑝-norm, 𝑙1-norm of x is defined as:

‖𝑥‖1 =
∑︁
𝑖

|𝑥𝑖| (3.31)

This norm is quite common among the norm family. It has many name and many

forms among various fields, namely Manhattan norm.

l2-norm. The most popular of all norm is the 𝑙2-norm. It is used in almost everyy

field of engineering and science as a whole. 𝑙2-norm is defined as:

‖𝑥‖2 =

√︃∑︁
𝑖

𝑥2
𝑖 (3.32)

99

𝑙2-norm is well known as a Euclidean norm, which is used as a standard quantity

for measuring a vector difference. If the Euclidean norm is computed for a vector

difference, it is known as a Euclidean distance:

‖𝑥1 − 𝑥2‖2 =

√︃∑︁
𝑖

(𝑥𝑖
1 − 𝑥𝑖

2)
2 (3.33)

l∞-norm. The 𝑙∞-norm is defined as:

‖𝑥‖∞ = ∞

√︃∑︁
𝑖

𝑥∞
𝑖 (3.34)

Let consider the vector 𝑋, if 𝑥𝑖 is the highest element in vector 𝑋, by the property

of the infinity itself, we have: 𝑥∞
𝑖 ≈ 𝑥∞

𝑘 ∀𝑖 ̸= 𝑘, then
∑︀

𝑖 𝑥
∞
𝑖 = 𝑥∞

𝑘 . And we have

‖𝑥‖∞ = ∞
√︀∑︀

𝑖 𝑥
∞
𝑖 = ∞

√
𝑥∞
𝑘 = |𝑥𝑘|. Now we have simple definition of 𝑙∞-norm as:

‖𝑥‖∞ = 𝑚𝑎𝑥(|𝑥𝑖|).

So our attack phase is denoted as Algorithm 5 by using FGSM. Where x defines

the original input, 𝑦𝑡𝑟𝑢𝑒 defines the ground truth label, 𝑦* is an adversarial label, f

is the activation function of machine learning model, 𝜖 is the maximum adversarial

value, 𝑙𝑖 defines the norm. In the attacking phase, we set the learning rate for crafting

adversarial examples to 0.01 to keeps adversarial noises are as small as possible and

the iterative process is repeated 500 times. From the clean images, we will create the

targeted output images.

3.4.2 Implementation

The classification task was evaluated on the ImageNet benchmark dataset. We con-

sider the ImageNet dataset [96] that is a very large database designed for use in visual

object recognition research. The original ImageNet includes more than 14 million im-

ages in 20,000 categories with a typical category, such as “vending machine” or “street

sign”, consisting of several hundred images. The machine learning model that we use

is Google Inception V3 [108] that was trained with 1,000 common categories Ima-

geNet. We randomly select some testing images. By applying FGSM with 𝑙1-norm,

100

Algorithm 5: Crafting Adversarial Examples with 𝑙-norm optimization
input : 𝑥, 𝑦𝑡𝑟𝑢𝑒, 𝑦*, 𝑓 , 𝜖, 𝑙𝑖
output : 𝑥*

parameter: learning rate = 0.01, epochs = 500

1 𝑥← 𝑥* // initial adversarial sample

2 𝛿𝑥 ← 0⃗ // initial perturbation factor

3 𝑖𝑡𝑒𝑟 ← 1 // initial iteration counter

4 while 𝛿𝑥 < 𝜖 and 𝑓(𝑥*) ̸= 𝑦* and 𝑖𝑡𝑒𝑟 <= 𝑒𝑝𝑜𝑐ℎ𝑠 do
5 𝑥* ← 𝑥 + 𝛿 · 𝑠𝑖𝑔𝑛(▽𝐿(𝑦*|𝑥*))
6 𝛿𝑥 ← norm(𝑙𝑖)
7 maximize 𝐿𝑜𝑠𝑠(𝑦*|𝑥*) respect to 𝛿𝑥
8 𝛿 ← 𝑐𝑙𝑖𝑝(𝑥*, 𝑥− 𝜖, 𝑥 + 𝜖)
9 𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1

10 end
11 return 𝑥*

𝑙2-norm, and 𝑙∞-norm to craft adversarial images target to randomly targeted labels.

3.4.3 Results

Intuitively, we use our own images (include pictures of vending machine, computer

mouse and keyboard) and an image of oscilloscope from ImageNet dataset for analysis.

We randomly selected targeted labels for the creation of adversarial images. By using

the FGSM method in combination with 𝑙1-norm, 𝑙2-norm, and 𝑙∞-norm, from each

original image we create three different adversarial images.

Figure 3-15 shows the results of creating adversarial images from the original

image of the oscilloscope. We find that the deep learning system is easily fooled

with adversarial images. We observe the changing of probabilities of the original

label before and after using Gaussian and Median filters. In addition, we intuitively

observe that adversarial images created with 𝑙1-norm and 𝑙2-norm are easier to defeat

than 𝑙∞-norm. With Gaussian kernel size 3×3, the probability of original label is still

equal to 0 with adversarial 𝑙∞-norm. It means that Gaussian kernel size 3×3 can not

remove the adversarial noises in this case.

Figure 3-16 shows the implementation results with the observation on the proba-

bilities of adversarial label. The results demonstrate the probabilities of adversarial

101

Figure 3-15: Classification Results on Oscilloscope Image with observation on the
probabilities of Original Label

label drop from nearly 100% to 0% when we use both Gaussian and Median filter

exclude Gaussian kernel size 3×3 with adversarial 𝑙∞-norm.

Figure 3-16: Classification Results on Oscilloscope Image with observation on the
probabilities of Adversarial Label

Figure 3-17 and Figure 3-18 show the implementation results with image of vend-

ing machine. The adversarial vending machine 𝑙∞-norm is the strongest adversarial

when both Gaussian and Median can not regain the probabilities of original label.

Figure 3-19 shows the implementation results with images of computer mouse and

computer keyboard.

Figure 3-20 shows the results of creating adversarial images from the original

102

Figure 3-17: Classification Results on Vending Machine Image with observation on
the probabilities of Original Label

Figure 3-18: Classification Results on Vending Machine Image with observation on
the probabilities of Adversarial Label

image of the oscilloscope. We find that the deep learning system is easily fooled with

adversarial images. In addition, we intuitively observe that adversarial images created

with 𝑙1-norm and 𝑙2-norm are harder to detect than 𝑙∞-norm.

Figure 3-21 shows the experimental results when we use the image filters method

on the original image of the oscilloscope. We find that the Gaussian filter reduces

classification accuracy more than the median filter. Especially in the case of the

median with size filter 3×3 and 5×5, the classification results are better than the

original image.

103

(a) Observation on the probabilities of Origi-
nal Keyboard Label

(b) Observation on the probabilities of Adver-
sarial Label

(c) Observation on the probabilities of Origi-
nal Computer Mouse Label

(d) Observation on the probabilities of Adver-
sarial Label

Figure 3-19: Classification Results on Keyboard and Computer Mouse Images

Similar to the original image, we also apply image filter methods to adversarial

images. Figure 3-22 shows classification results on adversarial images created by the

FGSM method in combination with 𝑙1-norm. Figure 3-23 illustrates classification

results on adversarial images created by the FGSM method in combination with

𝑙2-norm. We observed that Gaussian kernel size 3x3 could not restore identity to

ground truth label on adversarial image with 𝑙2-norm. The probability for vending

machine label is only 14.8%. Meanwhile, the median filter still works effectively in

removing adversarial noises. Figure 3-24 shows classification results on adversarial

images created by the FGSM method in combination with 𝑙∞-norm. We observed

that Gaussian kernel size 3×3 could not eliminate the effect of adversarial noise with

𝑙∞-norm on deep learning system classification. Gaussian 5×5 gives better results,

but the label with the highest probability of identification is “tabacco shop”. The

Median filter removes adversarial noises but cannot help the deep learning system

correctly identify ground truth labels.

Table 3.13 shows experimental results on oscilloscope, vending machine (v-machine),

104

(a) Orginal Oscilloscope (b) Adversarial FGSM_L1 Vending Machine

(c) Adversarial FGSM_L2 Vending Machine (d) Adversarial FGSM_L∞ Vending Machine

Figure 3-20: Adversarial Oscilloscope (targeted class: Ostrich Sign)

computer mouse (c-mouse) and keyboard sets. This result shows us a large corre-

lation between norm operations in search space of adversarial examples. It is clear

that for the 𝑙∞-norm, the Gaussian (3×3, 5×5) and the Median (3×3) methods are

more difficult to completely eliminate adversarial noises based on the 𝑙1 and 𝑙2 norm.

Median (5×5) still proved superior in removing adversarial noises in all settings.

3.4.4 Summary for Evaluating the robustness of adversarial

perturbation against Image Filters

In this section, we focus on investigating the connection between the search space of

adversarial examples and the defense based on the frequency domain. Our empirical

results demonstrate that the FGSM method in combination with 𝑙∞-norm produces

the strongest adversarial examples. In this case, both the Gaussian and the Median

filters are unable to restore identification to the ground truth label. However, when

using 𝑙∞-norm to create adversarial examples, we also significantly reduce the quality

of the original image compared to using 𝑙1 and 𝑙2 norm. In terms of similarities with

105

(a) Orginal Oscilloscope with Gaussian
(3× 3)

(b) Orginal Oscilloscope with Gaussian
(5× 5)

(c) Orginal Oscilloscope with Median (3× 3) (d) Orginal Oscilloscope with Median (5× 5)

Figure 3-21: Original Oscilloscope with Image Filters

the original image, 𝑙1 and 𝑙2 norm produce much better adversarial examples than 𝑙∞

norm.

106

(a) Adversarial Oscilloscope with Gaussian
(3× 3)

(b) Adversarial Oscilloscope with Gaussian
(5× 5)

(c) Adversarial Oscilloscope with Median
(3× 3)

(d) Adversarial Oscilloscope with Median
(5× 5)

Figure 3-22: Adversarial FGSM L1 Oscilloscope (targeted class: Ostrich) with
Image Filters

Table 3.13: Implementation Results

Input
No filter Gau 3x3 Med 3x3 Gau 5x5 Med 5x5
OL AL OL AL OL AL OL AL OL AL

Org oscilloscope 0.997 0 0.997 0 0.996 0 0.995 0 0.983 0
adv 𝑙1 oscilloscope 0 1 0.997 0 0.993 0 0.996 0 0.982 0
adv 𝑙2 oscilloscope 0 1 0.995 0 0.992 0 0.994 0 0.985 0
adv 𝑙∞ oscilloscope 0 1 0 0.995 0.945 0.001 0.937 0 0.997 0
Org v-machine 0.779 0 0.558 0 0.881 0 0.517 0 0.857 0
adv 𝑙1 v-machine 0 0.999 0.589 0.004 0.805 0.001 0.604 0.001 0.827 0
adv 𝑙2 v-machine 0 1 0.148 0.015 0.543 0.006 0.407 0.001 0.804 0
adv 𝑙∞ v-machine 0 1 0.031 0.157 0.053 0.005 0.066 0.002 0.064 0
Org keyboard 0.894 0 0.767 0 0.761 0 0.661 0 0.4 0
adv 𝑙1 keyboard 0 0.999 0.529 0.002 0.665 0 0.556 0 0.451 0
adv 𝑙2 keyboard 0 0.999 0.596 0.002 0.567 0.001 0.57 0 0.383 0
adv 𝑙∞ keyboard 0 1 0 0.977 0.139 0.107 0.132 0.01 0.267 0
Org c-mouse 0.724 0 0.93 0 0.937 0 0.964 0 0.924 0
adv 𝑙1 c-mouse 0 0.999 0.518 0.004 0.911 0 0.914 0 0.884 0
adv 𝑙2 c-mouse 0 1 0.116 0.045 0.168 0.005 0.757 0 0.793 0
adv 𝑙∞ c-mouse 0 0.999 0 0.995 0 0.9 0.014 0.013 0.218 0

107

(a) Adversarial Oscilloscope with Gaussian
(3× 3)

(b) Adversarial Oscilloscope with Gaussian
(5× 5)

(c) Adversarial Oscilloscope with Median
(3× 3)

(d) Adversarial Oscilloscope with Median
(5× 5)

Figure 3-23: Adversarial FGSM L2 Oscilloscope (targeted class: Ostrich) with
Image Filters

108

(a) Adversarial Oscilloscope with Gaussian
(3× 3)

(b) Adversarial Oscilloscope with Gaussian
(5× 5)

(c) Adversarial Oscilloscope with Median
(3× 3)

(d) Adversarial Oscilloscope with Median
(5× 5)

Figure 3-24: Adversarial FGSM L∞ Oscilloscope (targeted class: Ostrich) with
Image Filters

109

110

Chapter 4

Conclusion and Future Works

4.1 Conclusion

Adversarial examples (AE) is emerging as one of the key topics in the field of security

for AI-based systems. With very little modification of the input data, AE can deceive

and completely change the prediction of the output from the AI system while the

human is not able to realize the difference between AE and the original data. AE is

not only exploited on image classification systems but also appears in natural language

processing systems, speech recognition or object detection systems. Because of these

major security issues of AE, I focus on how to make the AI system more secure, able

to identify and distinguish between adversarial and legitimate patterns. My research

mainly focuses on building detection and distinguishing systems between AE and

legitimate images in image classification tasks. My main research directions include:

(1) AE detection system based on the spatial domain; (2) AE detection system based

on the frequency domain; (3) Evaluation of the robustness of AE against image filters.

The first is the spatial domain. Image processing systems based on deep learn-

ing such as image classification, image segmentation or object recognition are often

trained to overcome changes in spatial structure by using data augmentation tech-

niques. In addition, those deep learning systems are designed with multiple layers with

multiple operations and different settings to help the system learn more important

features. These properties help deep learning systems can produce very impressive

111

results in their own tasks. However, most of the training process in deep learning sys-

tems assumes that the data distribution is constant and it only focuses on fine-tuning

the system trainable parameters and weights. This makes it possible for attackers to

take advantage of AEs based on reusing or re-simulating parameters and deep learn-

ing structure and then editing them toward to a desired target. It is important that

the attack methods are based on the loss function optimization and are not concerned

with the spatial structure of the image. However deep learning systems have been

trained to work with spatial variation. Based on this analysis, I take advantage of the

spatial weaknesses of AE to build an AE identification system based on affine trans-

formations. Our detection system based on affine transformation (see Table. 3.8 on

MNIST dataset, Table. 3.7 on ImageNet dataset) mostly defeat many state-of-the-art

AE attack methods.

The second one is the frequency domain. During the creation of the AE, the attack

methods unintentionally created pixel values that far different from the neighboring

areas. Therefore, AEs have been unintentionally created on the high digital currency

in the image. Based on this observation and analysis, we design and build automated

detection systems (see Table 3.9 for MNIST dataset and 3.10 for ImageNet dataset)

for identifying AE and legitimate images based on the frequency domain. And the

experimental results have proved my system to produce very satisfactory results on

popular data sets such as MNIST and ImageNet datasets. Moreover, the combination

of transformation and filter achieve the best detection results to compare with other

methods (Table 3.11 for MNIST dataset and 3.12 for ImageNet dataset). From the

implementation results, we found that the combination of transformation and filters

(the CMTD method - see Figure 3-7) achieves the best detection accuracy rate in

both MNIST and ImageNet datasets.

The third one is how to evaluate the robustness of AE against image filters. In

the context of adversarial inputs at test time, we observed several effective attack

algorithms but few strong countermeasures. Any time a particular countermeasure is

invented, a new strong and powerful attack will be proposed to devastate that coun-

termeasure. We can explain adversarial examples in current machine learning models

112

as the result of unreasonably linear extrapolation but do not know what will happen

when we fix this particular problem; it may simply be replaced by another equally

annoying category of vulnerabilities. The vastness of the set of all possible inputs to

a machine learning model seems to be cause for pessimism. These questions may be

addressed empirically, by actually playing out the competition between new attacks

and new countermeasures are developed. So there is a very important question that

is how to measure the robustness of a machine learning algorithm. If we can answer

this question, we confidence to determine a particular machine learning algorithm is

strong or weak to AE. We evaluated the robustness of AE to a defensive system based

on the frequency domain. We investigated the FGSM method in combination with 𝑙1,

𝑙2 and 𝑙∞-norm to create AE. After that, we evaluate the robustness of the AE against

image filters. The implementation results (Table 3.13) show the AE with 𝑙∞-norm

is the strongest AE but image filters (Gaussian and Median) still defeat most of AE

noises in many settings.

4.2 Future Works

Adversarial machine learning is at a turning point. In the context of adversarial

inputs at test time, we observed several effective attack algorithms but few strong

countermeasures. Any time a particular countermeasure is invented, a new strong

and powerful attack will be proposed to devastate that countermeasure. Can we

expect this situation to continue indefinitely? Or can we expect the defender to

eventually gain a fundamental advantage? We can explain adversarial examples in

current machine learning models as the result of unreasonably linear extrapolation but

do not know what will happen when we fix this particular problem; it may simply be

replaced by another equally annoying category of vulnerabilities. The vastness of the

set of all possible inputs to a machine learning model seems to be cause for pessimism.

On the other hand, one may hope that as classifiers become more robust, it could

become impractical for an attacker to find input points that are reliably misclassified

by the target model, particularly in the black-box setting. These questions may be

113

addressed empirically, by actually playing out the competition between new attacks

and new countermeasures are developed. From our proposed countermeasure by using

image transformation and filtering, there are still unclear that will not have new

attacks to overcome them. So far, almost adversarial attacks and defense strategies

were proposed based heavily on heuristic and lack of concrete theory. Besides, the

gap between machine learning capability and the human brain still remains very

large. An arbitrary picture that humans may be easily recognized and give the right

answer but it still keeps challenges for a recognition system from different viewpoints,

illustrations, luminance, and noises. So there is a very important question that is how

to measure the robustness of a machine learning algorithm. If you can answer this

question, you can confidence to determine a particular machine learning algorithm is

strong or weak to adversarial example. Let consider a multi-classification classifier

with 𝐾 classes and 𝑑 features where one has a classification function 𝑓 : R𝑑 → R𝐾

and a sample x is classified via 𝑓(𝑥). We call a classifier robust at sample 𝑥 if with

small changes of the original input do not alter the final decision. Suppose that the

classifier outputs class 𝑐 for input 𝑥, that is 𝑓𝑥(𝑥) > 𝑓𝑗(𝑥) for 𝑗 ̸= 𝑐. The problem of

generating an adversarial sample 𝑥 + 𝛿 such that the classifier decision changes, can

be formulated as:

𝑚𝑖𝑛
𝛿∈R𝑑

, s.th. 𝑚𝑎𝑥
𝑙 ̸=𝑐

𝑓𝑙(𝑥 + 𝛿) ≥ 𝑓𝑐(𝑥 + 𝛿) and 𝑥 + 𝛿 ∈ 𝐶,

where 𝐶 is a constraint set specifying certain requirements on the adversarial

sample 𝑥+𝛿. However, in computer vision, with small unintended changes 𝑥+𝜃 should

not change the output classification. So the idea here to evaluate the robustness of

the machine learning system is that how to calculate the probability Ψ that the value

𝛿 /∈ 𝜃. If a machine learning system has a large probability Ψ that means it is a strong

system to adversarial examples and vice versa.

114

Appendix A

Figures

(a) Coordinate Transformation on Adversarial
“Keyboard” Image (targeted class is ostrich)

(b) Geometric Transla-
tion on Adversarial “Key-
board” Image (targeted
class is ostrich)

(c) Coordinate Transformation on Adversarial
“C-Mouse” Image (targeted class is ostrich)

(d) Geometric Transla-
tion on Adversarial “C-
Mouse” Image (targeted
class is ostrich)

(e) Coordinate Transformation on Adversarial
“V-Machine” Image (targeted class is ostrich)

(f) Geometric Transla-
tion on Adversarial “V-
Machine” Image (targeted
class is ostrich)

Figure A-1: Coordinate transformation - Geometric translation on the Adversarial
images (“Keyboard”, “C-Mouse”, “V-Machine”).

115

(a) digit 0 - index: 4457 (b) digit 0 - index: 5584

(c) digit 0 - index: 1438 (d) digit 0 - index: 1558

(e) digit 0 - index: 7031 (f) digit 0 - index: 9962

(g) digit 0 - index: 297 (h) digit 0 - index: 5259

(i) digit 0 - index: 4070 (j) digit 0 - index: 4515

Figure A-2: MNIST - Coordinate Transformation with 𝛼 ∈ [0, 30]. Index numbers
identify the index of images in MNIST training dataset. The figure illustrates the
adversarial perturbation is defeated by Coordinate Transformation in all experiments.

116

Bibliography

[1] Wieland Brendel *, Jonas Rauber *, and Matthias Bethge. Decision-based ad-
versarial attacks: Reliable attacks against black-box machine learning models.
In International Conference on Learning Representations ICLR, 2018.

[2] Naveed Akhtar, Jian Liu, and Ajmal Mian. Defense against universal adversarial
perturbations. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3389–3398, 2018.

[3] Naveed Akhtar and Ajmal Mian. Threat of adversarial attacks on deep learning
in computer vision: A survey. IEEE Access, 6:14410–14430, 2018.

[4] Hyrum S Anderson, Jonathan Woodbridge, and Bobby Filar. Deepdga:
Adversarially-tuned domain generation and detection. In Proceedings of the
2016 ACM Workshop on Artificial Intelligence and Security, pages 13–21. ACM,
2016.

[5] Anurag Arnab, Ondrej Miksik, and Philip HS Torr. On the robustness of se-
mantic segmentation models to adversarial attacks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition CVPR, pages 888–
897, 2018.

[6] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad
Rieck, and CERT Siemens. Drebin: Effective and explainable detection of
android malware in your pocket. In Ndss, volume 14, pages 23–26, 2014.

[7] Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing
robust adversarial examples. In International Conference on Machine Learning,
pages 284–293, 2018.

[8] Yonatan Belinkov and James Glass. Analysis methods in neural language pro-
cessing: A survey. Transactions of the Association for Computational Linguis-
tics, 7:49–72, 2019.

[9] Arjun Nitin Bhagoji, Daniel Cullina, Chawin Sitawarin, and Prateek Mittal.
Enhancing robustness of machine learning systems via data transformations. In
2018 52nd Annual Conference on Information Sciences and Systems (CISS),
pages 1–5. IEEE, 2018.

117

[10] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić,
Pavel Laskov, Giorgio Giacinto, and Fabio Roli. Evasion attacks against ma-
chine learning at test time. In Joint European conference on machine learning
and knowledge discovery in databases, pages 387–402. Springer, 2013.

[11] Battista Biggio, B Nelson, and P Laskov. Poisoning attacks against support
vector machines. In 29th International Conference on Machine Learning ICML,
pages 1807–1814. ArXiv e-prints, 2012.

[12] Jacob Buckman, Aurko Roy, Colin Raffel, and Ian Goodfellow. Thermometer
encoding: One hot way to resist adversarial examples. In International Confer-
ence on Learning Representations ICLR, 2018.

[13] Nicholas Carlini and David Wagner. Adversarial examples are not easily de-
tected: Bypassing ten detection methods. In Proceedings of the 10th ACM
Workshop on Artificial Intelligence and Security, pages 3–14, 2017.

[14] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neu-
ral networks. In 2017 IEEE Symposium on Security and Privacy (S&P 2017),
pages 39–57. IEEE, 2017.

[15] Nicholas Carlini and David Wagner. Audio adversarial examples: Targeted at-
tacks on speech-to-text. In 2018 IEEE Security and Privacy Workshops (SPW),
pages 1–7. IEEE, 2018.

[16] Pin-Yu Chen, Yash Sharma, Huan Zhang, Jinfeng Yi, and Cho-Jui Hsieh. Ead:
elastic-net attacks to deep neural networks via adversarial examples. In Thirty-
second AAAI conference on artificial intelligence, 2018.

[17] Tarang Chugh, Kai Cao, and Anil K Jain. Fingerprint spoof buster: Use of
minutiae-centered patches. IEEE Transactions on Information Forensics and
Security, 13(9):2190–2202, 2018.

[18] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song.
Adversarial attack on graph structured data. In International Conference on
Machine Learning (ICML), 2018.

[19] Nilesh Dalvi, Pedro Domingos, Sumit Sanghai, Deepak Verma, et al. Adver-
sarial classification. In Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 99–108. ACM, 2004.

[20] Guneet S. Dhillon, Kamyar Azizzadenesheli, Jeremy D. Bernstein, Jean Kos-
saifi, Aran Khanna, Zachary C. Lipton, and Animashree Anandkumar. Stochas-
tic activation pruning for robust adversarial defense. In International Confer-
ence on Learning Representations ICLR, 2018.

[21] Harris Drucker and Yann Le Cun. Improving generalization performance using
double backpropagation. IEEE Transactions on Neural Networks, 3(6):991–997,
1992.

118

[22] Gintare Karolina Dziugaite, Zoubin Ghahramani, and Daniel M Roy. A study
of the effect of jpg compression on adversarial images. In the International
Society for Bayesian Analysis (ISBA 2016) World Meeting, 2016.

[23] Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou. Hotflip: White-box
adversarial examples for text classification. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 2: Short
Papers), pages 31–36, 2018.

[24] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati,
Chaowei Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song. Robust
physical-world attacks on deep learning models. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition CVPR, 2018.

[25] Reuben Feinman, Ryan R Curtin, Saurabh Shintre, and Andrew B Gardner.
Detecting adversarial samples from artifacts. arXiv preprint arXiv:1703.00410,
2017.

[26] Ugo Fiore, Alfredo De Santis, Francesca Perla, Paolo Zanetti, and Francesco
Palmieri. Using networks for improving classification effectiveness in credit card
fraud detection. Information Sciences, 2017.

[27] Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yanjun Qi. Black-box generation
of adversarial text sequences to evade deep learning classifiers. In 2018 IEEE
Security and Privacy Workshops (SPW), pages 50–56. IEEE, 2018.

[28] Thomas Gebhart and Paul Schrater. Adversary detection in neural networks
via persistent homology. arXiv preprint arXiv:1711.10056, 2017.

[29] Justin Gilmer, Luke Metz, Fartash Faghri, Sam Schoenholz, Maithra Raghu,
Martin Wattenberg, and Ian Goodfellow. Adversarial spheres. In International
Conference on Learning Representations ICLR, 2018.

[30] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative ad-
versarial nets. In Advances in neural information processing systems, pages
2672–2680, 2014.

[31] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and har-
nessing adversarial examples. In International Conference on Learning Repre-
sentations ICLR, 2015.

[32] Gaurav Goswami, Nalini Ratha, Akshay Agarwal, Richa Singh, and Mayank
Vatsa. Unravelling robustness of deep learning based face recognition against
adversarial attacks. In Thirty-Second AAAI Conference on Artificial Intelli-
gence, 2018.

119

[33] Kathrin Grosse, Praveen Manoharan, Nicolas Papernot, Michael Backes, and
Patrick McDaniel. On the (statistical) detection of adversarial examples. arXiv
preprint arXiv:1702.06280, 2017.

[34] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, and
Patrick McDaniel. Adversarial perturbations against deep neural networks for
malware classification. arXiv preprint arXiv:1606.04435, 2016.

[35] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, and
Patrick McDaniel. Adversarial examples for malware detection. In European
Symposium on Research in Computer Security, pages 62–79. Springer, 2017.

[36] Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens Van Der Maaten.
Countering adversarial images using input transformations. In International
Conference on Learning Representations ICLR, 2018.

[37] Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos,
Erich Elsen, Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates,
et al. Deep speech: Scaling up end-to-end speech recognition. arXiv preprint
arXiv:1412.5567, 2014.

[38] Warren He, James Wei, Xinyun Chen, Nicholas Carlini, and Dawn Song. Ad-
versarial example defense: Ensembles of weak defenses are not strong. In 11th
{USENIX} Workshop on Offensive Technologies ({WOOT} 17), 2017.

[39] Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel-rahman Mohamed,
Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Brian
Kingsbury, et al. Deep neural networks for acoustic modeling in speech recog-
nition. IEEE Signal processing magazine, 29, 2012.

[40] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[41] Sungeun Hong, Woobin Im, Jongbin Ryu, and Hyun S Yang. Sspp-dan: Deep
domain adaptation network for face recognition with single sample per person.
In 2017 IEEE International Conference on Image Processing (ICIP), pages 825–
829. IEEE, 2017.

[42] Hossein Hosseini, Yize Chen, Sreeram Kannan, Baosen Zhang, and Radha
Poovendran. Blocking transferability of adversarial examples in black-box learn-
ing systems. arXiv preprint arXiv:1703.04318, 2017.

[43] Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. Black-box adver-
sarial attacks with limited queries and information. In International Conference
on Machine Learning ICML, pages 2142–2151, 2018.

[44] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer
networks. In Advances in neural information processing systems NeurIPS 2015,
pages 2017–2025, 2015.

120

[45] Guoqing Jin, Shiwei Shen, Dongming Zhang, Feng Dai, and Yongdong Zhang.
Ape-gan: Adversarial perturbation elimination with gan. In ICASSP 2019-
2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 3842–3846. IEEE, 2019.

[46] Jinkyu Kim and John Canny. Interpretable learning for self-driving cars by
visualizing causal attention. In Proceedings of the IEEE international conference
on computer vision ICCV, pages 2942–2950, 2017.

[47] Thomas N Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks. In International Conference on Learning Representa-
tions (ICLR), 2017.

[48] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influ-
ence functions. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 1885–1894. JMLR. org, 2017.

[49] Jascha Kolberg, Marta Gomez-Barrero, Sushma Venkatesh, Raghavendra Ra-
machandra, and Christoph Busch. Presentation attack detection for finger
recognition. In Handbook of Vascular Biometrics, pages 435–463. Springer,
2020.

[50] Jernej Kos, Ian Fischer, and Dawn Song. Adversarial examples for generative
models. In 2018 IEEE Security and Privacy Workshops (SPW), pages 36–42.
IEEE, 2018.

[51] Rajesh Kumar, Zhang Xiaosong, Riaz Ullah Khan, Jay Kumar, and Ijaz Ahad.
Effective and explainable detection of android malware based on machine learn-
ing algorithms. In Proceedings of the 2018 International Conference on Com-
puting and Artificial Intelligence, pages 35–40. ACM, 2018.

[52] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in
the physical world. In International Conference on Learning Representations
ICLR, 2017.

[53] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learn-
ing at scale. In International Conference on Learning Representations ICLR,
2017.

[54] Ruggero Donida Labati, Enrique Muñoz, Vincenzo Piuri, Roberto Sassi, and
Fabio Scotti. Deep-ecg: Convolutional neural networks for ecg biometric recog-
nition. Pattern Recognition Letters, 126:78–85, 2019.

[55] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436, 2015.

[56] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

121

[57] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit
database. AT&T Labs [Online]. Available: http://yann. lecun. com/exdb/mnist,
2, 2010.

[58] Hyeungill Lee, Sungyeob Han, and Jungwoo Lee. Generative adversar-
ial trainer: Defense to adversarial perturbations with gan. arXiv preprint
arXiv:1705.03387, 2017.

[59] J Li, S Ji, T Du, B Li, and T Wang. Textbugger: Generating adversarial text
against real-world applications. In 26th Annual Network and Distributed System
Security Symposium, 2019.

[60] Bin Liang, Hongcheng Li, Miaoqiang Su, Pan Bian, Xirong Li, and Wenchang
Shi. Deep text classification can be fooled. In Proceedings of the 27th Inter-
national Joint Conference on Artificial Intelligence, pages 4208–4215. AAAI
Press, 2018.

[61] Bin Liang, Hongcheng Li, Miaoqiang Su, Xirong Li, Wenchang Shi, and Xi-
aofeng Wang. Detecting adversarial image examples in deep networks with
adaptive noise reduction. arXiv preprint arXiv:1705.08378, 2017.

[62] Fangzhou Liao, Ming Liang, Yinpeng Dong, Tianyu Pang, Xiaolin Hu, and
Jun Zhu. Defense against adversarial attacks using high-level representation
guided denoiser. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition CVPR, pages 1778–1787, 2018.

[63] Yen-Chen Lin, Zhang-Wei Hong, Yuan-Hong Liao, Meng-Li Shih, Ming-Yu Liu,
and Min Sun. Tactics of adversarial attack on deep reinforcement learning
agents. In Proceedings of the 26th International Joint Conference on Artificial
Intelligence, pages 3756–3762. AAAI Press, 2017.

[64] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into transferable
adversarial examples and black-box attacks. In International Conference on
Learning Representations ICLR, 2017.

[65] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face
attributes in the wild. In Proceedings of the IEEE international conference on
computer vision CVPR, pages 3730–3738, 2015.

[66] Jiajun Lu, Theerasit Issaranon, and David Forsyth. Safetynet: Detecting and
rejecting adversarial examples robustly. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pages 446–454, 2017.

[67] Jiajun Lu, Hussein Sibai, Evan Fabry, and David Forsyth. No need to worry
about adversarial examples in object detection in autonomous vehicles. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition
CVPR, 2018.

122

[68] Chunchuan Lyu, Kaizhu Huang, and Hai-Ning Liang. A unified gradient regu-
larization family for adversarial examples. In 2015 IEEE International Confer-
ence on Data Mining, pages 301–309. IEEE, 2015.

[69] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to adversarial attacks.
arXiv preprint arXiv:1706.06083, 2017.

[70] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to adversarial attacks.
In 6th International Conference on Learning Representations, ICLR 2018, Van-
couver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings,
2018.

[71] Dongyu Meng and Hao Chen. Magnet: a two-pronged defense against ad-
versarial examples. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 135–147. ACM, 2017.

[72] Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and Bastian Bischoff. On
detecting adversarial perturbations. In International Conference on Learning
Representations (ICLR), 2017.

[73] Jan Hendrik Metzen, Mummadi Chaithanya Kumar, Thomas Brox, and Volker
Fischer. Universal adversarial perturbations against semantic image segmenta-
tion. In Proceedings of the IEEE International Conference on Computer Vision
ICCV, pages 2774–2783. IEEE, 2017.

[74] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems, pages 3111–3119, 2013.

[75] Vahid Mirjalili and Arun Ross. Soft biometric privacy: Retaining biometric
utility of face images while perturbing gender. In 2017 IEEE International
joint conference on biometrics (IJCB), pages 564–573. IEEE, 2017.

[76] Takeru Miyato, Andrew M Dai, and Ian Goodfellow. Adversarial training
methods for semi-supervised text classification. In International Conference
on Learning Representations ICLR, 2017.

[77] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Ve-
ness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland,
Georg Ostrovski, et al. Human-level control through deep reinforcement learn-
ing. Nature, 518(7540):529, 2015.

[78] Andreas Mogelmose, Mohan Manubhai Trivedi, and Thomas B Moeslund.
Vision-based traffic sign detection and analysis for intelligent driver assistance
systems: Perspectives and survey. IEEE Transactions on Intelligent Trans-
portation Systems, 13(4):1484–1497, 2012.

123

[79] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svo-
boda, and Michael M Bronstein. Geometric deep learning on graphs and man-
ifolds using mixture model cnns. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 5115–5124, 2017.

[80] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal
Frossard. Universal adversarial perturbations. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition CVPR, pages 1765–1773,
2017.

[81] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deep-
fool: a simple and accurate method to fool deep neural networks. In Proceedings
of the IEEE conference on computer vision and pattern recognition CVPR, pages
2574–2582, 2016.

[82] James Newsome, Brad Karp, and Dawn Song. Polygraph: Automatically gener-
ating signatures for polymorphic worms. In 2005 IEEE Symposium on Security
and Privacy (S&P’05), pages 226–241. IEEE, 2005.

[83] Linh Nguyen, Sky Wang, and Arunesh Sinha. A learning and masking approach
to secure learning. In International Conference on Decision and Game Theory
for Security, pages 453–464. Springer, 2018.

[84] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay
Celik, and Ananthram Swami. Practical black-box attacks against machine
learning. In Proceedings of the 2017 ACM on Asia Conference on Computer
and Communications Security, pages 506–519. ACM, 2017.

[85] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay
Celik, and Ananthram Swami. The limitations of deep learning in adversarial
settings. In 2016 IEEE European Symposium on Security and Privacy (Eu-
roS&P), pages 372–387. IEEE, 2016.

[86] Nicolas Papernot, Patrick McDaniel, Ananthram Swami, and Richard Harang.
Crafting adversarial input sequences for recurrent neural networks. InMILCOM
2016-2016 IEEE Military Communications Conference, pages 49–54. IEEE,
2016.

[87] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram
Swami. Distillation as a defense to adversarial perturbations against deep neu-
ral networks. In 2016 IEEE Symposium on Security and Privacy (S&P 2016),
pages 582–597. IEEE, 2016.

[88] Roberto Perdisci, David Dagon, Wenke Lee, Prahlad Fogla, and Monirul Sharif.
Misleading worm signature generators using deliberate noise injection. In 2006
IEEE Symposium on Security and Privacy (S&P’06), pages 15–pp. IEEE, 2006.

124

[89] Yunchen Pu, Zhe Gan, Ricardo Henao, Xin Yuan, Chunyuan Li, Andrew
Stevens, and Lawrence Carin. Variational autoencoder for deep learning of
images, labels and captions. In Advances in neural information processing sys-
tems, pages 2352–2360, 2016.

[90] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition
(CVPR), pages 7263–7271, 2017.

[91] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In Advances in neural
information processing systems NeurIPS 2015, pages 91–99, 2015.

[92] Yafeng Ren and Donghong Ji. Neural networks for deceptive opinion spam
detection: An empirical study. Information Sciences, 385:213–224, 2017.

[93] Andrew Slavin Ross and Finale Doshi-Velez. Improving the adversarial robust-
ness and interpretability of deep neural networks by regularizing their input
gradients. In Thirty-second AAAI conference on artificial intelligence, 2018.

[94] Andras Rozsa, Manuel Günther, Ethan M Rudd, and Terrance E Boult. Are
facial attributes adversarially robust? In 2016 23rd International Conference
on Pattern Recognition (ICPR), pages 3121–3127. IEEE, 2016.

[95] Andras Rozsa, Manuel Günther, Ethan M Rudd, and Terrance E Boult. Facial
attributes: Accuracy and adversarial robustness. Pattern Recognition Letters,
2017.

[96] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
Imagenet large scale visual recognition challenge. International Journal of Com-
puter Vision IJCV, 115(3):211–252, 2015.

[97] Swami Sankaranarayanan, Arpit Jain, Rama Chellappa, and Ser Nam Lim.
Regularizing deep networks using efficient layerwise adversarial training. In
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[98] Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph
Studer, Tudor Dumitras, and Tom Goldstein. Poison frogs! targeted clean-
label poisoning attacks on neural networks. In Advances in Neural Information
Processing Systems, pages 6103–6113, 2018.

[99] Uri Shaham, Yutaro Yamada, and Sahand Negahban. Understanding adver-
sarial training: Increasing local stability of supervised models through robust
optimization. Neurocomputing, 307:195–204, 2018.

[100] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K Reiter. Acces-
sorize to a crime: Real and stealthy attacks on state-of-the-art face recognition.

125

In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 1528–1540. ACM, 2016.

[101] Sijie Shen, Ryosuke Furuta, Toshihiko Yamasaki, and Kiyoharu Aizawa. Fool-
ing neural networks in face attractiveness evaluation: Adversarial examples with
high attractiveness score but low subjective score. In 2017 IEEE Third Inter-
national Conference on Multimedia Big Data (BigMM), pages 66–69. IEEE,
2017.

[102] Richard Shin and Dawn Song. Jpeg-resistant adversarial images. In NeurIPS
2017 Workshop on Machine Learning and Computer Security, 2017.

[103] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneer-
shelvam, Marc Lanctot, et al. Mastering the game of go with deep neural
networks and tree search. nature, 529(7587):484, 2016.

[104] Dawn Song, Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir
Rahmati, Florian Tramer, Atul Prakash, and Tadayoshi Kohno. Physical adver-
sarial examples for object detectors. In 12th {USENIX} Workshop on Offensive
Technologies ({WOOT} 18), 2018.

[105] Lance Spitzner. Honeypots: Catching the insider threat. In 19th Annual
Computer Security Applications Conference, 2003. Proceedings., pages 170–179.
IEEE, 2003.

[106] Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. One pixel attack
for fooling deep neural networks. IEEE Transactions on Evolutionary Compu-
tation, 2019.

[107] Yanmin Sun, Andrew KC Wong, and Mohamed S Kamel. Classification of
imbalanced data: A review. International Journal of Pattern Recognition and
Artificial Intelligence, 23(04):687–719, 2009.

[108] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. Rethinking the inception architecture for computer vision. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pages
2818–2826, 2016.

[109] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Er-
han, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks.
In International Conference on Learning Representations ICLR, 2014.

[110] Pedro Tabacof, Julia Tavares, and Eduardo Valle. Adversarial images for vari-
ational autoencoders. In Advances in neural information processing systems
NeurIPS Workshop 2016, 2016.

126

[111] Rohan Taori, Amog Kamsetty, Brenton Chu, and Nikita Vemuri. Targeted
adversarial examples for black box audio systems. In 2019 IEEE Security and
Privacy Workshops (SPW), pages 15–20. IEEE, 2019.

[112] Simen Thys, Wiebe Van Ranst, and Toon Goedemé. Fooling automated surveil-
lance cameras: adversarial patches to attack person detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops, 2019.

[113] Shixin Tian, Guolei Yang, and Ying Cai. Detecting adversarial examples
through image transformation. In Thirty-Second AAAI Conference on Arti-
ficial Intelligence, 2018.

[114] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan
Boneh, and Patrick McDaniel. Ensemble adversarial training: Attacks and
defenses. In International Conference on Learning Representations ICLR, 2018.

[115] Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, and Efty-
chios Protopapadakis. Deep learning for computer vision: A brief review. Com-
putational intelligence and neuroscience, 2018, 2018.

[116] Xuyu Wang, Lingjun Gao, Shiwen Mao, and Santosh Pandey. Deepfi: Deep
learning for indoor fingerprinting using channel state information. In 2015 IEEE
wireless communications and networking conference (WCNC), pages 1666–1671.
IEEE, 2015.

[117] Jonathan Wu, Prakash Ishwar, and Janusz Konrad. Two-stream cnns for
gesture-based verification and identification: Learning user style. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition Work-
shops, pages 42–50, 2016.

[118] Chaowei Xiao, Jun-Yan Zhu, Bo Li, Warren He, Mingyan Liu, and Dawn Song.
Spatially transformed adversarial examples. In International Conference on
Learning Representations (ICLR), 2018.

[119] Huang Xiao, Battista Biggio, Gavin Brown, Giorgio Fumera, Claudia Eckert,
and Fabio Roli. Is feature selection secure against training data poisoning? In
International Conference on Machine Learning ICML, pages 1689–1698, 2015.

[120] Weilin Xu, David Evans, and Yanjun Qi. Feature squeezing: Detecting ad-
versarial examples in deep neural networks. In 25th Annual Network and Dis-
tributed System Security Symposium, NDSS 2018, San Diego, California, USA,
February 18-21, 2018.

[121] Qingchen Zhang, Laurence T Yang, Zhikui Chen, and Peng Li. A survey on
deep learning for big data. Information Fusion, 42:146–157, 2018.

127

[122] Stephan Zheng, Yang Song, Thomas Leung, and Ian Goodfellow. Improving
the robustness of deep neural networks via stability training. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition CVPR,
pages 4480–4488, 2016.

[123] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-
to-image translation using cycle-consistent adversarial networks. In Proceedings
of the IEEE International Conference on Computer Vision ICCV, 2017.

[124] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic
net. Journal of the royal statistical society: series B (statistical methodology),
67(2):301–320, 2005.

[125] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial at-
tacks on neural networks for graph data. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining,
pages 2847–2856. ACM, 2018.

128

My Publications

Refereed journal papers:

[2] Dang Duy Thang and Toshihiro Matsui,“Adversarial Examples Identification

in an End-to-end System with Image Transformation and Filters”, IEEE ACCESS

(SCIE Q1, IF: 4.098). Accepted.

[1] Dang Duy Thang and Toshihiro Matsui, “Search Space of Adversarial Per-

turbations Against Image Filters” , International Journal of Advanced Computer

Science and Applications (ESCI, IF: 1.324), Vol. 11 No 1, pages 11-19, 2020.

Refereed conference papers:

[2] Dang Duy Thang and Toshihiro Matsui, “A Label-based Approach for Au-

tomatic Identifying Adversarial Examples with Image Transformation”, In Proceed-

ings of the Seventh International Symposium on Computing and Networking (CAN-

DAR’19), Nagasaki, Japan, November 26-29, pages 112-120. IEEE, 2019 (acceptance

rate 14.9%).

[1] Dang Duy Thang and Toshihiro Matsui, “Automated Detection System for

Adversarial Examples with High-Frequency Noises Sieve”, In Proceedings of the

11th International Symposium on Cyberspace Safety and Security (CSS), Guangzhou,

China, December 1-3, pages 348-362. Springer, 2019 (acceptance rate 26%).

Non-reviewed papers:

[3] Dang Duy Thang, Taisei Kondo, Toshihiro Matsui, “A Label-based System

for Detecting Adversarial Examples by Using Low Pass Filters”, Computer Security

Symposium, Nagasaki, Japan, October 21-24, pages 1356-1363, 2019.

[2] Taisei Kondo, Dang Duy Thang, Toshihiro Matsui、“Creation of Adversarial

Example Attack that is Difficult to Protect by LPF”, Computer Security Symposium,

Nagasaki, Japan, October 21-24, pages 1364-1369, 2019.

[1] Dang Duy Thang, Toshihiro Matsui, “White-box attack on Google Machine

Learning system” , Poster Session, the 13th International Workshop on Security,

Tohoku University, Japan, 2018. Best Poster Award

129

130

