
S� 0� ;� 8�
�

�

�

������ ����
�����9�����
9��09� ��1�
���2!���0��������0��9 ���29��� �

�
�

��9��
��	��
74� L:�

�
�
�
�
�
�

N9A#CDB"P*(P*�
N9A#CDB"-H)�
N9A#CDB"2.�

�
�

�� � R � ,�

A Study on Homomorphic Property of

Ring-Based Lattice Cryptography

Sari Handa

Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy in Informatics

in the Graduate School of Information Security

INSTITUTE of INFORMATION SECURITY, JAPAN

2019

© 2019 Sari Handa

ABSTRACT

Computing secret data keeping their secrecy is a significant technology problem of modern digital

society. It enables to analyze sensitive data such as personal data protecting their privacy or enables

distributed computation without leakage of secret against involving parties or engines. This

secure computation is realized by technologies having homomorphic property, that is, performing

arithmetic operations on data through their some form of privacy-preserving encodings. Those

technologies are mainly multi-party computation (MPC) and homomorphic schemes. In this

thesis, we study the homomorphic schemes: the homomorphic encryption as encryption scheme

and multilinear maps as encoding scheme.

Homomorphic Encryption. We improve algebraic structure for homomorphic parallel com-

putation. The slot structure of Ring-LWE encryption based on the cyclotomic ring is GF(pd).

To multiply integer plaintexts on this slot, only one dimension is available though computation

needs full dimensions. We focus the fact that on the decomposition ring, which is a subring

of the cyclotomic ring, the slot structure becomes Zpl . We construct FV-type and BGV-type

homomorphic encryption schemes on the decomposition ring and implement these schemes. In

the experiment, we verify the effect of our slot structure on the decomposition ring. The timings

of homomorphic arithmetic operations are approximately linear with respect to the number of

slots, and it shows that our schemes perform parallel computing without waste of a plaintext

space. Comparing to HElib, our schemes results in several times faster computation.

We also construct bootstrap functions for our schemes. On the cyclotomic ring, conversion

between the ring and slots is complex and it causes bottleneck in the bootstrap procedure. In

contrast on the decomposition ring, the conversion is just multiplying a matrix by the vector of

the ring or slots, and we can compute this conversion homomorphically in a simple way. Our

implementation of the bootstrap performs fast at small parameters for an initial experiment.

Multilinear Maps. Multilinear Maps was realized as leveled encoding schemes based on ideal

lattice [18]. We study applications of multilinear maps using the leveled encoding scheme and

propose two schemes: a group key exchange protocol and a witness encryption scheme based on

the Hamilton Cycle Problem. These schemes are both based on the same method of generating a

product of all parties’ secrets homomorphically by pilling up their encodings.

Acknowledgements

First of all, I would like to express my appreciation to my supervisor Professor Seiko Arita. He

adviced from his deep insights into cryptography and interests in mathematics. Cryptography

and number theory attracted me and I had struggled with and enjoyed studying them during my

master’s and doctoral programs.

I am also grateful to Professor Atsuhiro Goto, Professor Hiroshi Doi and Professor Akira

Otsuka for their constructive comments and suggestions.

Many thanks to members of Arita laboratory. I got widely perspective through discussion

about their interesting researches.

I wish thank to members of algebraic number theory seminar. They helped me in understand-

ing the textbook.

I acknowledge the cooperation and understanding of colleagues and managers of my company.

Thanks to their recommend to study at the institute, I could know this interesting research world.

This work was supported by JST CREST Grant Number JPMJCR1503. This work is further

supported by the JSPS KAKENHI Grant Number 17K05353.

Finally, I am deeply grateful to my family and friends. They always support and encourage

me. I could continue studying long years due to their persistent help.

Contents

1 Introduction 1
1.1 Secure Computation . 1

1.2 Homomorphic Encryption . 2

1.2.1 Background . 2

1.2.2 SIMD operation using Chinese Reminder Theorem 3

1.2.3 Our contributions . 3

1.2.4 Related works . 5

1.3 Multilinear Maps . 6

1.3.1 Our contributions . 6

2 Lattice-Based Cryptography 7
2.1 Preliminaries . 7

2.1.1 Notation . 7

2.2 LWE Encryption . 7

2.2.1 Lattices . 7

2.2.2 Gaussian distributions and subgaussian random variables 8

2.2.3 LWE Problem . 8

2.3 Number Fields and Rings . 9

2.3.1 Number Fields . 9

2.3.2 Cyclotomic Fields and Rings . 10

2.3.3 Tensorial Decomposition . 10

2.3.4 Geometry of numbers of cyclotomic ring: Ideal Lattices 11

2.4 Ring-LWE Encryption . 12

2.4.1 Ring-LWE Problem . 12

i

ii

2.5 Homomorphic Encryption . 14

2.5.1 Homomorphic encryption scheme . 14

2.5.2 Two types of Ring-LWE homomorphic encryption scheme 15

2.5.3 Bootstrap . 19

3 SIMD Operations of Homomorphic Encryption 21
3.1 Batching techniques . 21

3.2 Algebraic slots . 22

3.2.1 Prime decomposition . 22

3.2.2 Structure of prime ideals of prime p . 23

3.2.3 Chinese Reminder Theorem . 24

3.3 Complex canonical embedding slots . 25

3.4 Utilization of the slot structures . 26

3.4.1 SIMD operation of messages . 26

3.4.2 Fast multiplication of ciphertexts . 26

3.5 Slot structures of various schemes . 27

4 Homomorphic Encryption Scheme Based on Decomposition Ring 29
4.1 Introduction . 29

4.2 Decomposition Rings and Their Properties . 31

4.2.1 Decomposition Field . 31

4.2.2 Decomposition Ring . 31

4.2.3 Bases of the decomposition ring RZ . 33

4.2.4 Conversion between η- and ξ-vectors 37

4.3 Homomorphic Encryption Based on Decomposition Ring 39

4.3.1 The Ring-LWE problem on the decomposition ring 39

4.3.2 Security . 40

4.3.3 Parameters . 40

4.3.4 Sampling . 41

4.3.5 Encoding methods of elements in RZ 42

4.3.6 Two types of Homomorphic Encryption Schemes 43

4.3.7 Scheme Description . 43

iii

4.3.8 Tensorial Decomposition . 50

4.3.9 Bootstrap . 51

4.4 Norms on the decomposition ring . 59

4.5 Correctness . 60

4.5.1 FV-type scheme DR-FV . 61

4.5.2 BGV-type scheme DR-BGV . 64

4.5.3 Efficiency . 67

4.6 Benchmark Results . 67

5 Two Applications of Multilinear Maps: Group Key Exchange and Witness Encryp-
tion 73
5.1 Introduction . 74

5.2 Preliminaries . 75

5.2.1 Approximate Multilinear Maps . 75

5.3 Group Key Exchange using Multilinear Maps 77

5.3.1 BCPQ Model : Security Model for GKE 78

5.3.2 Our Construction . 79

5.3.3 Proof of Security . 82

5.4 Witness Encryption using Multilinear Maps . 87

5.4.1 Preliminaries . 87

5.4.2 Design Principle . 89

5.4.3 Our Construction . 90

5.4.4 Proof of Security: Soundness Security 93

6 Conclusions 101

Chapter 1

Introduction

1.1 Secure Computation

Computing secret data keeping their secrecy is a significant technology problem of modern

digital society. It enables to analyze sensitive data such as personal data protecting their privacy

or enables distributed computation without leakage of secret against involving parties or engines.

Main technologies to realize the secure computation are secret sharing, garbled circuit and

homomorphic encryption. Here we outline these technologies.

In the secret sharing, shares of a secret are distributed to multiple parties. We can restore the

secret only when we gather those shares more than threshold. A representative secret sharing

method is a Shamir’s secret sharing scheme [43]. We can compute secret data securely using this

secret sharing method by gathering the calculated results of secret’s shares from parties.

Yao proposed the garbled circuit protocol [49] in which two parties, called garbler and

evaluator, interactively evaluate a garbled boolean circuit as follows. First, the garbler labels

input/output wires of the circuit with random encodings and represents the circuit using the

encodings, which is called the garbled circuit. The garbler also generates the encodings of his

input values to the circuit. Next, the evaluator receives the garbled circuit as well as the encodings

of the input value via oblivious transfer protocol, and evaluates the circuit on the input encodings,

and then sends the result encoding to the garbler. The garbler finally gains an output value of

the circuit from the received encoding. The evaluator evaluates the circuit without knowing any

information about input value and output value since the circuit and the wires are encoded.

The above two methods are executed on the multi-party protocol (MPC). The computation of

1

2

the each party is light in MPC; however, the communication size becomes large.

The homomorphic encryption is the encryption scheme that enables to calculate on the

ciphertexts without being decrypted. In contrary to MPC, the homomorphic encryption performs

in a stand-alone environment, but it requires huge computational cost and consumes large memory.

Recently, the hybrid systems of MPC and the homomorphic encryption are studied toward

real-word usage of the secure computation. TASTY [47] combines Yao’s garbled circuit with

the homomorphic encryption. The study of [12] is a hybrid of the homomorphic encryption and

Private Set Intersection (PSI), which is new type of MPC protocol allows two parties to compute

the intersection of their sets without exposing anything except the intersection. They achieve a

small communication overhead by the homomorphic encryption.

In this work, we study homomorphic property, that is, performing arithmetic operation on data

through their some form of privacy-preserving encodings. There are two types in cryptography

schemes having the homomorphic property, those are encryption scheme and encoding scheme.

The encryption scheme recovers calculated data from input encodings. The encoding scheme

does not recover the calculated data but extracts some deterministic value with respect to the

calculated encoding. We study the homomorphic encryption for the encryption scheme and the

multilinear maps for the encoding scheme.

1.2 Homomorphic Encryption

1.2.1 Background

Since the breakthrough construction given by Gentry [22], many efforts have been dedicated to

make homomorphic encryption scheme more secure and more efficient. Especially, HE schemes

based on the Ring-LWE problem [38, 6, 17, 39] have obtained theoretically-sound proof of security

and well-established implementations such as HElib [27] and SEAL v2.0 [37]. Nowadays many

researchers apply HE schemes to privacy-preserving tasks for mining of outsourced data such as

genomic data, medical data, financial data and so on [26, 35, 11, 34, 36].

3

1.2.2 SIMD operation using Chinese Reminder Theorem

In 2014, Smart and Vercauteren introduced a packing technique for homomorphic encryption by

decomposing the plaintext space using the Chinese Remainder Theorem (CRT). This technique

allows us to encrypt multiple message into a single ciphertext and execute Single Instruction

Multiple Data (SIMD) operations homomorphically on it.

CRT on integers is an isomorphism among Zp and the product of residual fields Zpi , where

each pi are co-prime factors of p. In the SIMD of homomorphic encryption, it is CRT on the

cyclotomic ring R using the prime factorization, that is, the principal ideal (p) of a prime p

decomposes into prime ideals Pi in the cyclotomic ring. The isomorphism is among a residual

ring R/pR and the product of residual fields R/Pi. We call each of residual fields R/Pi a "slot".

We know the structure of the slot by observing how prime p decomposes in the cyclotomic

ring. In the m-th cyclotomic ring R = Z(ζ), let d be a multiplicative order of p in m and

g = ϕ(m)/d, then the prime p decomposes into g prime ideals P0, · · · ,Pg−1, and the structure of

each plaintext slot is a finite field GF(pd) which is represented as a set of polynomials in Zp[X]
with degree d.

For parallel calculation of plaintexts in Zp, we set each plaintext to Zp coefficients of the

polynomials in each slot. When we add two packed ciphertexts homomorphically, we add

corresponding polynomials coefficient-wise for each slot. However, in multiplication, we get

product only from the constant terms of corresponding polynomials for each slot, and the other

terms, which are cross-terms, are not used. The slot structure of finite field GF(pd) causes heavy

computation. We study structure of plaintext space from the perspective of algebraic number

theory and construct more simple plaintext slot space.

1.2.3 Our contributions

Decomposition ring. We focus on a special subring of cyclotomic ring named decomposition ring.

This ring is the subring fixed by all maps which do not change prime idealsPi over the prime p. It

is known that on the decomposition ring RZ , the prime p factors into g prime ideals p0, · · · ,pg−1

and their norm is p, whereas the norm of Pi is pd in the cyclotomic ring. Since the slot structure

is Zp in the decomposition ring, we get products of plaintexts slot-wise with no waste for homo-

morphic multiplication. We show CRT of the cyclotomic ring R and the decomposition ring RZ

4

in the figure blow.

R = Z(ζ) R/pR GF(pd) ⊕ · · · ⊕ GF(pd)

RZ RZ/pRZ Zp ⊕ · · · ⊕ Zp

Z Z/pZ

∼

∼

Construction. Based on the above investigation, we construct two types of homomorphic

encryption schemes over the decomposition ring: DR-FV and DR-BGV. The DR-FV and DR-BGV

schemes realize the FV [17] and the BGV scheme [6] over the decomposition ring, respectively.

We also construct the bootstrapping function for our schemes. We show several bounds on the

noise growth occurring among homomorphic computations and prove that both of DR-FV and

DR-BGV schemes are fully homomorphic on modulus of magnitude q = O(λlog λ).

Security. For security we will need hardness of a variant of the decisional Ring-LWE problem

over the decomposition ring. Recall the search version of Ring-LWE problem is already proved to

have a quantum polynomial time reduction from the approximate shortest vector problem of ideal

lattices in any number field by Lyubashevsky, Peikert, and Regev [38]. They proved equivalence

between the search and decisional versions of the Ring-LWE problems only for cyclotomic

rings. However, it is not difficult to see that the equivalence holds also over the decomposition

rings, since those are subrings of cyclotomic rings and inherit good properties about prime ideal

decomposition from them.

Benchmark result. Since the dimension of the decomposition ring is g = ϕ(m)/d, considering

the same dimension to the cyclotomic ring, the decomposition ring has d times higher parallelism

as compared with the cyclotomic ring.

We implemented our two decomposition ring homomorphic encryption schemes DR-FV and

DR-BGV and compared efficiency with HElib, which is based on the BGV scheme over ordinal

cyclotomic rings. In HElib, even if the number of slots becomes only two times larger, their

timings becomes much larger then the two times. This indicates that HElib scheme cannot handle

many slots with high parallelism. On the other hand in both of our DR-FV and DR-BGV, timings

are approximately linear with respect to the number of slots. Here we describe timing results of

5

HElib and DR-BGV under the similar level of security parameters. The timing of Enc, Dec, Add,

Mult, Exp-by-28 are respectively

HElib(395.85, 2740.01, 10.92, 1397.89, 6664.32),

DR-BGV(30.14, 29.35, 3.70, 282.11, 1678.52).

This benchmark indicates that DR-BGV is several times faster than HElib for integer plaintext, as

expected.

We implemented the bootstrap procedure for our schemes and performed an initial experiment

at small parameters. The bootstrap procedure needs many homomorphic transformations between

the ring and the plaintext slots. We think our simple transformation, which is just multiply a

matrix to the vector, makes our bootstrap efficient.

1.2.4 Related works

In 2009, Gentry [22] established the fully homomorphic encryption scheme for the first time.

After this breakthrough, representative two schemes, BGV scheme [6] and FV [17] scheme, are

proposed depending on the techniques such as key switching [7] and modulus switching [6].

Since the computational cost of homomorphic operations are very expensive, parallel computing

is needed for higher throughput. The SIMD technique, proposed by [45], enables parallel

homomorphic computation using the CRT over polynomials, and has been adopted in many HE

schemes. We focus on the wasteful slot structure of such HE schemes based on cyclotomic ring,

and improve the slot structure using the decomposition ring. Kim and Song [32] also focus

on the similar issue and construct HE based on another subring of the cyclotomic ring, called

"conjugate-invariant ring", aiming for efficient homomorphic fixed-point number computation.

Terada, Nakano, Okumura and Miyaji [48] conducted some experiments regarding lattice attack

against Ring-LWE problem over the decomposition ring. They concluded that the Ring-LWE

problem on the decomposition ring is expected to be as secure as the ordinal Ring-LWE problem

on the cyclotomic ring.

6

1.3 Multilinear Maps

Cryptographic bilinear map was realized by elliptic curve and opened the path to new functional

cryptography such as identity-based encryption (IBE), attribute-based encryption (ABE), group

signature, and so on. The extension from bilinear map to multilinear map was desired and defined

by Boneh and Silverberg, but the construction was log-time open problem.

With progress in study of homomorphic encryption, researchers considered whether the

homomorphic property of homomorphic encryption has capability to realize multilinear map.

Garg et al proposed first construction of multilinear map based on ideal lattice[18], which is

leveled encoding scheme as they called graded encoding scheme. The multi-linearity is attractive

property for cryptography, and high-functionality schemes are proposed such as multi-party key

exchange, ABE for circuit, and it produces new cryptographic primitives like witness encryption

and indistinguishability obfuscation.

The security of multilinear map is under studying, and knowledge has been accumulated by

the works of attack against new schemes and works of improving those schemes more securely.

1.3.1 Our contributions

We study application of multilinear maps and propose two schemes: a group key exchange

protocol and a witness encryption scheme based on the Hamilton Cycle Problem.

Our group key exchange protocol is very simple, each party multiplies his encoding to the

received encoding and pass the result to the next party in upflow and downflow. The computational

cost and communication size per party are constant with respect to the number of parties, this is

an advantage brought using multilinear maps.

Witness encryption is a new type of cryptosystem that could be achieved using multilinear

maps. Witness encryption is based on some NP-complete language. Only one with possession

of the witness for the language can decrypt the ciphertext to its original message. The first

construction by Garg et al is based on EXACT-COLVER Problem as NP-complete language. We

construct a new witness encryption scheme based on another NP-complete problem, Hamilton

Cycle Problem. We prove security of our scheme based on our generic cyclic colored matrix

model that is a variant of a generic colored matrix model.

Chapter 2

Lattice-Based Cryptography

2.1 Preliminaries

2.1.1 Notation

For a positive integer m, Zm denotes the ring of congruent integers mod m, and Z∗m denotes its

multiplicative subgroup. For an integer a (that is prime to m), ord×m(a) denotes the order of

a ∈ Z∗m. Basically vectors are supposed to represent column vectors. The symbol 1 denotes

a column vector with all entries equal to 1. In denotes the n × n identity matrix. The symbol

Diag(α1, · · · , αn) means a diagonal matrix with diagonals α1, . . . , αn. For vectors x , y (∈ Cn),〈
x , y

〉
=

∑n
i=1 xiyi denotes the inner product of x and y .

$$x $$2 =
√〈

x , x
〉

denotes the l2-norm

and
$$x $$∞ = max{

&&xi
&&}n

i=1 denotes the infinity norm of x . For vectors a and b, a⊙ b = (aibi)i
denotes the component-wise product of a and b. For a square matrix M over R, s1(M) denotes

the largest singular value of M . For a matrix A over C, A∗ = A
T denotes the transpose of complex

conjugate of A.

2.2 LWE Encryption

2.2.1 Lattices

For n linearly independent vectors B = {bj}n
j=1 ⊂ Rn, Λ = L(B) =

{∑n
j=1 zj bj | zj ∈ Z (∀ j)

}
is called an n-dimensional lattice. For a lattice Λ ⊂ Rn, its dual lattice is defined by Λ∨ =

{
y ∈

Rn |
〈
x, y

〉
∈ Z (∀x ∈ Λ)

}
. The dual lattice is itself a lattice. The dual of dual lattice is the same

7

8

as the original lattice: (Λ∨)∨ = Λ. For a countable subset A ⊂ Rn, the sum Ds(A) def
=

∑
x∈A Ds(x)

is well-defined.

2.2.2 Gaussian distributions and subgaussian random variables

For a positive real s > 0, the n-dimensional (spherical) Gaussian function ρs : Rn → (0, 1] is

defined as

ρs(x) = exp(−π
$$x

$$2
2/s2).

It defines the continuous Gaussian distribution Ds with density s−nρs(x).
A random variable X over R is called subgaussian with parameter s (> 0) if E[exp(2πtX)] ≤

exp(πs2t2) (∀t ∈ R). A random variable X over Rn is called subgaussian with parameter s if〈
X, u

〉
is subgaussian with parameter s for any unit vector u ∈ Rn. A random variable X according

to Gaussian distribution Ds is subgaussian with parameter s. A bounded random variable X (as

|X | ≤ B) with E[X] = 0 is subgaussian with parameter B
√

2π.

A subgaussian random variable with parameter s satisfies the tail inequality:

Pr[|X | ≥ t] ≤ 2 exp
(
−π t2

s2

)
(∀t ≥ 0). (2.1)

The discrete Gaussian distribution DΛ+c,s on a (coset of) lattice Λ is defined by restricting the

continuous Gaussian distribution Ds on the (coset of) lattice Λ:

DΛ+c,s(x) def
=

Ds(x)
Ds(Λ + c) (x ∈ Λ + c).

2.2.3 LWE Problem

The Learning With Errors Problem (LWE problem) was introduced by Regev [41] as a general-

ization of "learning parity with noise". Here we describe a definition by Brakerski, Gentry, and

Vaikuntanathan [6].

Definition 1 (LWE, definition 2.12 in [6]) For an integer q = q(n) and an error distribution

χ = χ(n) over Zq, the learning with errors problem LWEn,m,q,χ is defined as follows: Given m

independent samples from As,χ (for some s ∈ Zn
q), output s with noticeable probability.

The (average-case) decision variant of the LWE problem, denoted DLWEn,m,q,χ, is to distin-

guish (with non negligible advantage) m samples chosen according to As,χ (for uniformly random

9

s← Zn
q), from m samples chosen according to the uniform distribution over Zn

q × Zq. We denote

by DLWEn,q,χ the variant where the adversary gets oracle access to As,χ and is not apriori

bounded in the number of samples.

For an algorithm B and security parameter λ, we denote

DLWEn,q,χAdv[B] := |Pr[BAs,χ (1λ) = 1] − Pr[BU(Znq×Zq)(1λ) = 1]|.

2.3 Number Fields and Rings

2.3.1 Number Fields

A complex number α ∈ C is called an algebraic number if it satisfies f (α) = 0 for some

nonzero polynomial f (X) ∈ Q[X] over Q. For an algebraic number α, the monic and irreducible

polynomial f (X) satisfying f (α) = 0 is uniquely determined and called the minimum polynomial

of α. An algebraic number α generates a number field K = Q(α) over Q, which is isomorphic to

Q[X]/(f (X)), via g(α) 0→ g(X). The dimension of K as a Q-vector space is called the degree of

K and denoted as [K : Q]. By the isomorphism, [K : Q] = deg f .

An algebraic number α is called an algebraic integer if its minimum polynomial belongs to

Z[X]. All algebraic integers belonging to a number field K = Q(α) constitutes a ring R, called

an integer ring of K .

A number field K = Q(α) has n (= [K : Q]) isomorphisms ρi (i = 1, . . . , n) to subfields of the

complex number fieldC. The trace map TrK |Q : K → Q is defined by TrK |Q(a) =
∑n

i=1 ρi(a) (∈ Q).
If all of the isomorphisms ρi induce automorphisms of K (i.e., ρi(K) = K for any i), the field K is

called a Galois extension of Q and the set of isomorphisms Gal(K |Q) def
= {ρ1, . . . , ρn} constitutes

a group, called the Galois group of K over Q. By the Galois theory, all subfields L of K and all

subgroups H of G = Gal(K |Q) corresponds to each other one-to-one:

L 0→ H = GL = {ρ ∈ G | ρ(a) = a for any a ∈ L}

: the stabilizer group of L

H 0→ L = KH = {a ∈ K | ρ(a) = a for any ρ ∈ H}

: the fixed field by H.

Here, K is also a Galois extension of L with Galois group Gal(K |L) = H (since any isomorphism

(of K into C) that fixes L sends K to K). Especially, [K : L] = |H |. The trace map of K over L is

10

defined by TrK |L(a) =
∑
ρ∈H ρ(a) (∈ L) for a ∈ K .

2.3.2 Cyclotomic Fields and Rings

Let m be a positive integer. A primitive m-th root of unity ζ = exp(2π
√
−1/m) has the minimum

polynomial Φm(X) ∈ Z[X] of degree n = φ(m) that belongs to Z[X], called the cyclotomic

polynomial. Especially, ζ is an algebraic integer. A number field K = Q(ζ) generated by ζ is

called the m-th cyclotomic field and its elements are called cyclotomic numbers. The integer ring

R of the cyclotomic field K = Q(ζ) is known to be R = Z[ζ] = Z[X]/Φm(X). In particular, as a

Z-module, R has a basis (called power basis) {1, ζ, . . . , ζn−1}, i.e., R = Z ·1+Z · ζ + · · ·+Z · ζn−1.

The integer ring R is called the m-th cyclotomic ring and its elements are called cyclotomic

integers. For a positive integer q, Rq = R/qR = Zq[X]/Φm(X) is a ring of cyclotomic integers

mod q.

The cyclotomic field K = Q(ζ) is a Galois extension over Q since it has n = [K : Q]
automorphisms ρi defined by ρi(ζ) = ζ i for i ∈ Z∗m. Its Galois group G = Gal(K |Q) is

isomorphic to Z∗m by corresponding ρi to i. Note that ρi(b) = ρi(b), since a = ρ−1(a).

The trace of ζ for the prime index m is simple:

Lemma 1 If the index m is prime, we have

TrK |Q(ζ i) =
⎧⎪⎪⎨
⎪⎪⎩

m − 1 (i ≡ 0 (mod m))
−1 (i ! 0 (mod m)).

2.3.3 Tensorial Decomposition

Lyubashevsky, Peikert, and Regev provide a toolkit for Ring-LWE cryptography [39], in this work

they propose a technique to construct Ring-LWE schemes that work in arbitrary cyclotomic rings,

which is required for SIMD operations and for security reason, using tensorial decomposition.

Mayer implements the toolkit in his work [40].

The tensorial decomposition technique views a m-th cyclotomic ring as a combination of

decomposed ml-th cyclotomic rings where m =
∏

l ml. The decomposing ring technique enables

us to compute simply and fast ring operations, in particularly canonical embedding of the ring

elements.

11

In our homomorphic encryption schemes based on the decomposition ring, the conversion

between a decomposition ring element and plaintext slots is the canonical embedding of the

decomposition ring element. We adopt the tensorial decomposition technique to it. The canonical

embedding of the m-th cyclotomic ring can be viewed as a tensor product of the canonical

embedding of the ml-th cyclotomic rings.

From Proposition 1.4.4 and 1.4.5 in [40], let m be any positive integer with prime power

factorization m =
∏s

l=0 ml , then ζm =
∏s

l=0 ζml and Q(ζm) is isomorphic as a field to the tensor

product
⊗s

l=0Q(ζml)

Q(ζm) ≃
s⊗

l=0
Q(ζml) (2.2)

via the correspondence
s∏

l=0
al ↔

(
s⊗

l=0
al

)
, (2.3)

where al ∈ Q(ζml).
When viewing K = Q(ζm) as the tensor product

⊗s
l=0Q(ζml) as above, the canonical embed-

ding σ = (ρi)i∈Z∗m of K = Q(ζm) is viewed as the tensor product of the canonical embeddings

σ(l) = (ρ j) j∈Z∗ml
of Kl = Q(ζml) using the CRT of Z∗m ≃

∏s
l=0 Z

∗
ml

,

σ

(
s⊗

l=0
al

)
=

s⊗
l=0

(ρ j(al)) j∈Z∗ml
=

s⊗
l=0

σ(l)(al). (2.4)

Applying this relation to the cyclotomic ring R = Z(ζm) having the powerful basis pand its

decomposed cyclotomic rings Rl = Z(ζml) having the powerful bases pl , we have,

σ

(
s⊗

l=0
pl

T

)
=

s⊗
l=0

σ(l)(plT). (2.5)

This shows that the canonical embedding of the cyclotomic ring R = Z(ζm) is viewed as the

tensor product of the decomposed cyclotomic rings Rl = Z(ζml).

2.3.4 Geometry of numbers of cyclotomic ring: Ideal Lattices

Using the n automorphisms ρi (i ∈ Z∗m), the cyclotomic field K is embedded into an n-dimensional

complex vector space CZ∗m , called the canonical embedding σ : K → H (⊂ CZ∗m): σ(a) =
(ρi(a))i∈Z∗m . Its image σ(K) is contained in the space H defined as

H def
= {x ∈ CZ∗m : xi = xm−i (∀i ∈ Z∗m)}.

12

Since H = BRn with the unitary matrix B = 1√
2
56
7

I
√
−1J

J −
√
−1I

89
:
, the space H is isomorphic to Rn as

an inner product R-space (where J is the reversal matrix of the identity matrix I).

By the canonical embedding σ, one can regard the cyclotomic ring R (or its (fractional) ideals

of R) as lattices in the n-dimensional real vector space H, called ideal lattices. Inner products or

norms of elements a ∈ K are defined through the embedding σ:

〈
a, b

〉 def
=

〈
σ(a),σ(b)

〉
= TrK |Q(ab),$$a

$$
p

def
=

$$σ(a)$$p = (Σn
i=1

&&σi(a)
&&p)1/p for p < ∞,$$a

$$
∞

def
=

$$σ(a)$$∞ = max{
&&σi(a)

&&}n
i=1.

For any ring elements x, y ∈ R, their norms satisfy the following inequality

$$x · y
$$

p ≤
$$x

$$
∞ ·

$$y$$p

Relation between canonical and polynomial embedding norms. The norms of the canonical

embedding and the polynomial embedding of a ring element have a relation. x denotes a

coefficient vector of x ∈ R in the power basis and
$$x $$∞ denotes a polynomial embedding norm.

The relation is as follows:

There is a ring constant cm which depends only on m such that

$$x $$∞ ≤ cm ·
$$x

$$
∞ , ∀x ∈ R. (2.6)

The constant cm is studied in the work [16] by Damgård et al.

2.4 Ring-LWE Encryption

2.4.1 Ring-LWE Problem

The ring learning with errors (RLWE) problem was firstly introduced by Lyubashevsky, Peikert,

and Regev [38]. They give the formal definition with dual ideal and informal definition without

dual ideal.

Duality. Let K be a number field of degree n and R be its ring of integers R = OK . For any

lattice L in K (i.e. for the Z-span of any Q-basis of K), its dual is defined as L∨ =
{
x ∈

13

K | Tr(xL) ⊆ Z
}
. The dual ideal R∨ of R is a fractional ideal called codifferent and it yields a

nice relation between a dual ideal I∨ of an ideal I and its inverse I−1, that is I∨ = R∨I−1.

Here we describe their formal definitions of search and decisional Ring-LWE Problem.

Definition 2 (Ring-LWE Distribution, Definition 3.1 in [38]) Let K be a number field and R be

its ring of integers whose dual ideal is R∨. Let R∨q = R∨/qR∨. For a secret s ∈ R∨q and an

error distribution ψ over KR, a sample from the Ring-LWE distribution As,ψ over Rq × KR/R∨

is generated by choosing a ← Rq uniformly at random, choosing e ← ψ, and outputting

(a, b = (a · s)/q + e (mod)∨R).

Definition 3 (Ring-LWE, Search, Definition 3.2 in [38]) For some arbitrary secret s ∈ R∨q and an

error distribution ψ over KR, the search version of the Ring-LWE problem is defined as follows:

given access to arbitrarily many independent samples from As,ψ , find s.

Definition 4 (Ring-LWE, Average-Case Decision, Definition 3.3 in [38]) For a uniformly random

secret s ∈ R∨q and an error distribution ψ over KR, the average-case decision version of the

Ring-LWE problem is to distinguish with non-negligible advantage between arbitrarily many

independent samples from As,ψ and the same number of uniformly random and independent

samples from Rq × KR/R∨.

They informally defined a non-dual decisional Ring-LWE problem. Let the ring R be the

m-th cyclotomic ring for m = 2k (i.e., R = Z[x]/(xn + 1) for n = 2k−1).

Definition 5 (Ring-LWE, Decision (informal), in [38]) Fix a certain error distribution over R

and let s ∈ Rq be uniformly random. The decisional Ring-LWE problem is to distinguish arbitrary

many independent random noisy ring equations (a, b ≈ a · s) ∈ Rq ×Rq where each a is uniformly

random and each product a · s is perturbed by a term drawn independently from the error

distribution over R.

This non-dual Ring-LWE problem is equivalent to the dual Ring-LWE problem, because in

the case of m = 2k , R∨ = n−1R is simply a scaling of the ring and the dual Ring-LWE samples

(a, b = (a · s)/q+ e) can be transformed to the non-dual Ring-LWE samples (a, b′ = (a · s′)/q+ e′)

where s′ = s · n ∈ Rq and e′ = e · n ∈ R.

14

Security

In the work [38], the search version of Ring-LWE problem is proved to have a quantum polynomial

time reduction from the approximate shortest vector problem of ideal lattices in any number

field. They proved equivalence between the search and the decisional versions of the Ring-LWE

problems only for cyclotomic rings.

2.5 Homomorphic Encryption

Homomorphic encryption (HE) scheme enables us computation on encrypted data. One can add

or multiply (or more generally “evaluate”) given ciphertexts and generate a new ciphertext that

encrypts the sum or product (or “evaluation”) of underlying data of the input ciphertexts. Such

computation (called homomorphic addition or multiplication or evaluation) can be done without

using the secret key and one will never know anything about the processed or generated data.

Since the breakthrough construction given by Gentry [22], many efforts have been dedicated

to make such homomorphic encryption scheme more secure and more efficient.

2.5.1 Homomorphic encryption scheme

A homomorphic encryption scheme is a quadruple HE=(Gen, Encrypt, Decrypt, Evaluate) of

probabilistic polynomial time algorithms. Gen generates a public key pk, a secret key sk and an

evaluation key evk: (pk, sk, evk) ← Gen(1λ). Encrypt encrypts a plaintext x ∈ X to a ciphertext

c under a public key pk: c ← Encrypt(pk, x). Decrypt decrypts a ciphertext c to a plaintext x

using the secret key sk: x ← Decrypt(sk, c). Evaluate applies a function f : Xl → X (given as an

arithmetic circuit) to ciphertexts c1, . . . , cl and outputs a new ciphertext c f using the evaluation

key evk : c f ← Evaluate(evk, f , c1, . . . , cl).
A homomorphic encryption scheme HE is L-homomorphic for L = L(λ) if for any function

f : Xl → X given as an arithmetic circuit of depth L and for any l plaintexts x1, . . . , xl ∈ X, it

holds that

Decryptsk(Evaluateevk(f , c1, . . . , cl)) = f (x1, . . . , xl)

for ci ← Encryptpk(xi) (i = 1, . . . , l) except with a negligible probability (i.e., Decryptsk is

ring homomorphic). A homomorphic encryption scheme is called fully homomorphic if it is

15

L-homomorphic for any polynomial function L = poly(λ).

2.5.2 Two types of Ring-LWE homomorphic encryption scheme

In this section, we introduce representative two types of homomorphic encryption scheme based

on Ring-LWE problem, FV-type scheme and BGV-type scheme. The FV-type scheme was

proposed by Fan and Vercauteren [17], in which a message is placed in the most significant

digits of the ciphertext (called MSD form). FV scheme is implemented in SEAL [37] library.

The BGV-type scheme was proposed by Brakerski, Gentry, and Vaikuntanathan [6], in which

a message is placed in the lowest significant digits of the ciphertext (called LSD form). BGV

scheme is implemented in HElib [27] library.

Many Ring-LWE homomorphic encryption schemes including FV scheme and BGV scheme

are constructed on the cyclotomic ring. We will construct FV-type and BGV-type homomorphic

encryption schemes on the decomposition ring which is one of subrings of the cyclotomic ring.

In Section 4, we will describe our proposal schemes.

Scheme Description

Here we describe these two types of schemes as symmetric encryption.

Setup. The system parameters are determined according a given security level, those are a

ciphertext modulus q, a plaintext modulus t and a ring dimension n. The underlying cyclotomic

ring is R = Z[ζm] = Z[x]/(Φ(x)) where the cyclotomic polynomial Φ(x) has degree n = φ(m).
When the ring dimension m is chosen to be a power of 2, then the underlying cyclotomic ring is

R = Z[x]/(xn + 1). Set the n dimensional distributions, χkey for a secret key and χerr for a noise.

Secret key generation. A secret key s ∈ R is sampled from the distribution χkey.

Encryption. A noise e ∈ R is sampled from the distribution χerr , and using it a message m ∈ Rt

is encrypted in a LWE instance under the secret key s. The ciphertext is a pair of ring elements

ct = (a, b) ∈ Rq × Rq. In the FV-type scheme, this ciphertext forms below LWE instance

a + b · s ≡
⌊q

t

⌋
m + e (mod q).

16

In the BGV-type scheme, the ciphertext forms below LWE instance

a + b · s ≡ m + t · e (mod q).

Decryption and Correctness. Given a ciphertext ct = (a, b) and a secret key s, the noise in the

ciphertext is removed using the secret key and a message m is recovered.

In the FV-type scheme, the decryption is performed by setting

m←
⌊ t

q
(a + b · s mod q)

⌉
mod t.

Note that this rounding is done for each coefficient of the ring element.

The decryption procedure will work when the rounding in the upper formula is correct. Let

ϵ be a rounding error s.t. 0 ≤ ϵ = q
t −

⌊ q
t
⌋
< 1 and we suppose a + b · s =

⌊ q
t
⌋

m + e + rq for

some integer r . Then the decryption formula is

t
q
(a + b · s mod q) = t

q
(⌊q

t

⌋
m + e

)

=
t
q

((q
t
− ϵ

)
m + e

)

= m +
t
q
(
−ϵm + e

)

Let x be a coefficient vector of a ring element (−ϵm + e) and ν be an upper bound of a canonical

embedding norm
$$−ϵm + e

$$
∞. By the relation (2.6), when cm · ν < q

2t we get

t
q
$$x $$∞ ≤ t

q
cm · ν < t

q
q
2t
=

1
2 .

Therefore taking q large enough to ensure cm · ν < q
2t , the decryption procedure returns the

message m correctly.

In the BGV-type scheme, the decryption is performed by setting

m← (a + b · s mod q) mod t.

When all coefficients of a ring element a+b · s is no wrap-around by mod q then a+b · s = m+ t ·e
and decryption works. Let x be a coefficient vector of a + b · s and ν be an upper bound of a

canonical embedding norm
$$a+b · s

$$
∞. By the relation (2.6), when cm ·ν < q

2 then x ≤ cm ·ν < q
2 .

Therefore, the decryption works correctly by taking q large enough to ensure cm · ν < q
2 .

17

Homomorphic operations

Addition. Let cti = (ai, bi) for i = 1, 2 be two ciphertexts encrypted messages m1,m2 under a

same secret key s. In both FV-type and BGV-type scheme, homomorphic addition generates a

new ciphertext ct′ = (a′, b′) of the message m1 + m2 by just adding elements of ciphertexts as

follows: a′ = a1 + a2 mod q and b′ = b1 + b2 mod q. The noise of ct′ is sum of noises in the

added ciphertexts.

Multiplication. We start by observing a result of multiplying two equations with respect to

ciphertext ct1, ct2. In the FV-type scheme,

t
q
(a1 + b1 · s)(a2 + b2 · s) ≡ t

q
(⌊q

t

⌋
m1 + e1

) (⌊q
t

⌋
m2 + e2

)
(mod q)

≡ t
q

⌊q
t

⌋2
m1m2 +

t
q
(⌊q

t

⌋
(m1e2 + m2e1) + e1e2

)
(mod q)

and in the BGV-type scheme,

(a1 + b1 · s)(a2 + b2 · s) ≡ (m1 + t · e1)(m2 + t · e2) (mod q)

≡ m1m2 + t(m1e2 + m2e1 + te1e2) (mod q).

The right side of those congruences form encryption of the message m1m2 with added noise

terms.

Next we observe the left side of those congruences and consider how to create new ciphertext

from ct1, ct2 without using the secret key s.

(a1 + b1 · s)(a2 + b2 · s) ≡ a1a2 + (a1b2 + a2b1)s + b1b2s2 (mod q)

Key Switching (Linearization)

Using an encryption of a square of the secret key s2 under the secret key s, called switching key

swk, we can linearize the s2 to s. For example in the BGV-type scheme, let switching key be

swk = (A, B) s.t. A + Bs ≡ s2 + te (mod q),

(a1 + b1 · s)(a2 + b2 · s) ≡ a1a2 + (a1b2 + a2b1)s + b1b2(A + Bs) (mod q)

≡ (a1a2 + b1b2 A) + (a1b2 + a2b1 + b1b2B)s − b1b2te (mod q).

Let a′ = a1a2 + b1b2 A and b′ = a1b2 + a2b1 + b1b2B then c′ = (a′, b′) can be regarded as a

ciphertext of the message m1m2 with additive noise term e′ = b1b2te.

18

To reduce the noise of the switching key and the additive noise term e′, the switching key

swk is generated by using a word-decomposition technique. In the below procedure, w denotes

a word and lw denotes the number of the words.

SwitchKeyGen(s2, s) :

For j = 0 to lw − 1

ej ← χerr

hj = w j s2 + tej mod q

Bj
u← Rq

Aj = −Bj ⊙ s + hj mod q

return swk = ((Aj, Bj)lw−1
j=0)

The multiplication procedure computes α =
⌊

t
q (a1a2)

⌉
mod q, β =

⌊
t
q (a1b2 + a2b1)

⌉
mod q

and γ =
⌊

t
q (b1b2)

⌉
mod q for the FV-type scheme, or computes α = a1a2 mod q and β =

a1b2 + a2b1 mod q and γ = b1b2 mod q for the BGV-type scheme.

The term γ is decomposed to word expression d′j and used for computing A′ = b1b2 A and

B′ = b1b2B such as

A′ = Σlw−1
j=0 Aj ⊙ d′j mod q,

B′ = Σlw−1
j=0 Bj ⊙ d′j mod q.

Finally the procedure computes a′ = α + A′ mod q and b′ = β + B′ mod q and returns the

ciphertext ct′ = (a′, b′).

Modulus switching. The noise in a ciphertext can be reduced by scaling down the ciphertext.

The outline of this technique is dividing the ciphertext by some prime p that does not change an

encrypted message in the division operation.

Here we explain the rescaling technique in the case of BGV-type scheme. In the BGV-type

scheme, the ciphertext modulus is generated as a product of above primes s.t. ql = Σ
l
j=0pj for

l = 0 to L − 1 where pj ≡ 1 (mod t). L is a system parameter. The following is a rescaling

function that scales down a ciphertext from ql to ql ′, which means to divide by P =
ql

q′l
.

Rescale(ct = (a, b, l), l′) :

Fix δa s.t. δa ≡ a (mod P) and δa ≡ 0 (mod t),
δb s.t. δb ≡ b (mod P) and δb ≡ 0 (mod t)

19

a′ =
a − δa

P
, b′ =

b − δb

P

return ct′ = (a′, b′, l′)

The output ciphertext forms

a′ + b′s =
1
P
((a − δa) + (b − δb)s)

By the conditions δa ≡ a (mod P) and δb ≡ b (mod P), this equation is divisible exactly by P over

the integers. To divide by P does not affect in modulo t since P is chosen to satisfy P ≡ 1 (mod t).
The condition δa ≡ 0 (mod t) and δb ≡ 0 (mod t) leads the relation (a− δa)+ (b− δb)s ≡ a+ bs

(mod t). Therefore, the output ciphertext ct′ can recover the same massage m of ct.

Now we consider magnitude of the noise in the rescaled ciphertext. Recall that for correctness

of decryption in the BGV-type scheme, the upper bound of the canonical embedding norm$$a + bs
$$
∞ is evaluated. The norm of the rescaled ciphertext holds the below inequation

$$a′ + b′s
$$
∞ =

1
P
(
$$(a − δa) + (b − δb)s

$$
∞)

<
1
P
$$a + bs

$$
∞ +

1
P
$$δa + δbs

$$
∞.

Observing briefly, the original canonical norm
$$a + bs

$$
∞ is scale down to 1/P but additional

noise 1
P
$$δa + δbs

$$
∞ is occurred. In the work [25] [15], they analyze the noise magnitude of the

rescaled ciphertext.

2.5.3 Bootstrap

The rescaling technique reduces noise of the ciphertext, but it limits the number of homomorphic

operation. The bootstrap technique changes a ciphertext including a large noise to a fresh

ciphertext of the same message. the bootstrapping enables to remove the number constraint about

homomorphic operation.

The original bootstrapping technique was proposed by Gentry [22]. The main idea is that, to

apply decryption procedure homomorphically to a ciphertext under the encryption of the secret

key, the noises in the original ciphertext are removed and the outer ciphertext becomes a fresh

ciphertext of the same message.

Considering how to decrypt homomorphically, we don’t have homomorphic decryption op-

eration for LSD form which calculates a remainder by plaintext modulus. On the other hand,

20

we can remove lower noise homomorphically by right shifting, which is the decryption method

of MSD form using homomorphic additive and multiplicative operations. Concretely speaking,

extract digits from the original ciphertext (which equals to sum of message and noise implic-

itly) and calculate its noise and remove that from total. All of those operations are executed

homomorphically.

Chapter 3

SIMD Operations of Homomorphic
Encryption

3.1 Batching techniques

The message space of the basic Ring-LWE encryption is the cyclotomic ring Rt . Many applications

may want to use messages in integers rather than ring elements. When use Zt coefficients in

polynomials with respect to the ring elements for the integer messages, we gain only one product

of two messages from each constant term of the two polynomials. Using Chinese Remainder

Theorem (CRT), which divides the ring to many slots, we can get many products of messages

from every slots.

The CRT batching technique on the Ring-LWE homomorphic encryption was firstly intro-

duced by Smart and Vercauteren [45]. This technique allows us to encrypt multiple messages

in a single ciphertext and execute Single Instruction Multiple Data (SIMD) operations homo-

morphically on it. The CRT is an isomorphism among a residual ring R/pR and the product of

residual fields R/Pi where Pi are prime ideals of the prime p. HEAAN [10] uses a complex

canonical embedding for batching that maps an element of a residual ring R/pR to multiple

complex numbers by conjugate maps.

21

22

3.2 Algebraic slots

3.2.1 Prime decomposition

The slot structure on some algebraic field is determined by how the prime p decomposes into

prime ideals on the algebraic field. In this section, we observe the prime decomposition in various

kinds of fields.

Algebraic number field. Let K be an algebraic number field of degree n and OK be its ring of

integers. A principal ideal (p) generated by prime p decomposes into prime ideals P0, . . . ,Pg−1

of OK uniquely

(p) = Pe0
0 · · ·Peg−1

g−1

where Pi are distinct prime ideals. Let di be di
def
= [OK/Pi : Fp] then the norm of Pi is NPi = pdi

and

n = [K : Q] = e0d0 + · · · + eg−1dg−1.

Galois extension field. When K is a Galois extension field over Q, ei are same value and also

di are same value, therefore

(p) = (P0 · · ·Pg−1)e, NPi = pd, n = edg.

Cyclotomic ring. Furthermore, when K is a m-th cyclotomic field K = Q(ζ) with a primitive

m-th root of unity ζ and m is represented as m = m0pt, e = ϕ(pt) and d is a multiplicative order

of p mod m0 (d = ord×m0(p)).
Here, we consider the case that the p does not divide m (p ! m), that is m0 = m, pt = 1 and

e = ϕ(pt) = 1. In this case, the factorization of prime p on the cyclotomic ring R = Z[ζ] is as

follows:

(p) = P0 · · ·Pg−1, NPi = pd, n = ϕ(m) = dg.

Totally split case

The case of ei = 1 and di = 1 for all i is called totally split case. When d = 1 in the above

23

condition, that is p ≡ 1 (mod m) (i.e. m|(p − 1)), the prime p decompose completely in the

cyclotomic ring.

(p) = P0 · · ·Pg−1, NPi = p, n = ϕ(m) = g.

3.2.2 Structure of prime ideals of prime p

Let K be an algebraic number field K = Q(ω) of degree n with a minimal polynomial F(X) of

ω, and OK be its ring of integers. As described above, a principal ideal (p) generated by prime p

decomposes into prime ideals P0, . . . ,Pg−1 of OK uniquely

(p) = Pe0
0 · · ·Peg−1

g−1 .

Although the minimal polynomial F(X) is irreducible over Q, by taking mod p, it will be

factored into a product of several polynomials Fi(X)’s:

F(X) ≡ F0(X)e0 · · · Fg−1(X)eg−1 (mod p),

where all of Fi(X) ∈ Q[X] are irreducible mod p and their degree are di.

It is known that each prime factor Pi is generated by p and Fi(ω) as ideals of OK :

Pi = (p, Fi(ω)).

Therefore, we can know each prime factor Pi by factorization of the minimal polynomial F(X)
mod p.

Cyclotomic ring. In the case of the m-th cyclotomic field K = Q(ζ) where prime p does not

divide m (p ! m), the cyclotomic polynomialΦ(X) decomposes into g polynomials by taking mod

p:

Φ(X) ≡ F0(X) · · · Fg−1(X) (mod p), (3.1)

where all of Fi(X) ∈ Z[X] has degree d = ord×m(p) which is a divisor of n = ϕ(m). The number

of factors is equal to g = n/d. The prime ideals on the cyclotomic ring R = Z[ζ] are

Pi = (p, Fi(ζ)).

24

Totally split case

In the case of p decomposes completely in the cyclotomic ring (i.e. p ≡ 1 (mod m)),

Φ(X) ≡ Πi∈Z∗m(X − ωi) (mod p)

where ω is some primitive m-th root of unity. The prime ideals are

Pi = (p, (ζ − ωi)).

The condition p ≡ 1 (mod m) induces an important property, that is it guarantees the existence

of a primitive m-th root of unity ω in Zp. This integral primitive m-th root of unity ω is useful

for the Number Theoretic Transform (NTT).

3.2.3 Chinese Reminder Theorem

Theorem 1 (Chinese Reminder Theorem (CRT)) Let I1, · · · ,Ik be k integral and pairwise

co-prime ideals of an integral ring R. Let I be the product of I1, · · · ,Ik , then the following ring

homomorphism holds

R/I ≃ R/I1 ⊕ · · · ⊕ R/Ik .

From the prime factorization (p) = Pe0
0 · · ·Peg−1

g−1 and above CRT, we get an isomorphism among

a residual ring OK/(p) and the product of residual fields OK/Pi.

OK/(p) ≃ OK/Pe0
0 ⊕ · · · ⊕ OK/Peg−1

g−1 .

Cyclotomic ring. In the cyclotomic ring R = Z[ζ], each corresponding residual field is given

by

R/Pi ≃ R/(p, Fi(ζ)) ≃ Zp[X]/Fi(X) ≃ GF(pd)

for i = 0, . . . , g − 1. Thus by CRT, we have

Rp ≃ R/P0 ⊕ · · · ⊕ R/Pg−1 ≃ GF(pd) ⊕ · · · ⊕ GF(pd).

Totally split case

When p decomposes completely, the CRT is

Rp ≃ ⊕i∈Z∗m R/(p, (ζ − ωi))

25

where ω is a primitive m-th root of unity. By taking ω in Zp,

⊕i∈Z∗m R/(p, (ζ − ωi)) ≃ Zp ⊕ · · · ⊕ Zp.

Let a = (ai)i∈[0,n−1] be a coefficient vector of a ring element a = Σi∈[0,n−1]aiζ i and b ∈ Zn
p a

integer slot vector. The transform from the ring element to the slots is represented as a linear

transform such as:

b =

56666666
7

ωi0·0 ωi0·1 · · · ωi0·(n−1)

ωi1·0 ωi1·1 · · · ωi1·(n−1)

...
...

. . .
...

ωin−1·0 ωin−1·1 · · · ωin−1·(n−1)

89999999
:

a

where ik ∈ Z∗m (k = [0, n−1]). This transformation is called Number Theoretic Transform (NTT).

3.3 Complex canonical embedding slots

Recall the canonical embedding for the m-th cyclotomic field K = Q(ζ) (see Section 2.3.4).

Define a space H def
= {x ∈ CZ∗m : xi = xm−i (∀i ∈ Z∗m)}. The canonical embedding map

σ : K → H (⊂ CZ∗m) is

σ(a) = (ρi(a))i∈Z∗m

where ρi’s are automorphisms defined by ρi(ζ) = ζ i for i ∈ Z∗m. Note that ρi(a) = ρm−i(a) for

i ∈ Z∗m.

The ring homomorphism of the automorphisms ρi makes slot-wise homomorphism for ring

elements a, b ∈ R such that

σ(a + b) = (ρi(a + b))i∈Z∗m
= (ρi(a) + ρi(b))i∈Z∗m .

Using a coefficient vector a = (ai)i∈[n] of a ring element a = Σi∈[n]aiζ i, the canonical

embedding of the ring element a into the complex numbers of the slots is represented as a linear

transform such as:

σ(a) =

56666666
7

ρi0(a)
ρi1(a)
...

ρin−1(a)

89999999
:

=

56666666
7

ζ i0·0 ζ i0·1 · · · ζ i0·(n−1)

ζ i1·0 ζ i1·1 · · · ζ i1·(n−1)

...
...

. . .
...

ζ in−1·0 ζ in−1·1 · · · ζ in−1·(n−1)

89999999
:

a

26

where ik ∈ Z∗m (k = [n]). In the case of m is a prime, this transformation is as same as Discrete

Fourier Transform (DFT).

3.4 Utilization of the slot structures

The slot structure is used in two ways. The first way is SIMD operation and the second way is

fast multiplication of ring elements. In the SIMD operation, we compute ring elements packing

multiple messages. The resulting ring element includes the result of slot-wise computation of

the messages. To multiply ring elements efficiently, we convert each ring element to the slots and

multiply in slot-wise, and then pack the product in the slots back to the ring element. In this way,

we can reduce computational cost of multiplication of the ring elements.

3.4.1 SIMD operation of messages

In the algebraic slot structure, each slot with structure GF(pd) is represented as a degree d

polynomial modulo p. We set d integer messages to coefficients of the polynomial for each

slot. By the homomorphic addition, we gain sums of messages coefficient-wise. However in

the homomorphic multiplication, we gain products of messages only from constant terms of

polynomials of the slots. Because, the other terms of polynomials generate cross terms in the

slot-wise multiplication. We focus on this issue caused by GF(pd) slot structure, and shrink

the slot structure to Zp using the decomposition ring which is a subring of the cyclotomic ring.

The detail of our method is explained in the next chapter. Note that the totally split case is

inappropriate for SIMD operation of the message since the prime p, which would be of the form

mk + 1 with some integer k, is quiet large for the plaintext modulus.

The complex canonical embedding slot structure has n = ϕ(m) complex slots. The n complex

number messages are packed into one ring element a ∈ Z[ζ] using a inverse map of the canonical

embedding map. The image of the inverse map is complex number, thus a rounding operation is

required to be a ring element.

3.4.2 Fast multiplication of ciphertexts

The totally split case can be used for the fast multiplication of ciphertexts in the algebraic slot

structure, since the ciphertext modulus is large enough to use it. Thus, we can compute slot-wise

27

multiplication in the simple Zp slots.

For the complex canonical embedding slot structure, slot-wise multiplication is multiplying

complex numbers.

3.5 Slot structures of various schemes

Here we summarize the slot structures of various number fields and plot the representative

homomorphic encryption schemes having SIMD function in Figure 3.1.

Figure 3.1: Slot structures of homomorphic encryption schemes

The pack/unpack system with homomorphism realizes SIMD operation and the fast multipli-

cation.

One of those systems is CRT which is the isomorphism between a residual ring for a prime p

and a direct product of residual fields by prime ideals of the prime p. CRT generates the algebraic

slot structure. On the cyclotomic ring, each slot is a finite field GF(pd) and only a constant term

in d coefficients is available for homomorphic multiplication, though computation and space are

needed for d dimensions, as we state before. HElib [27] use this structure. We construct new

slot structure of Zp using the decomposition ring. The slot structure obtains d times parallelism

28

against the structure of the cyclotomic ring in a same security level. The CRT batching of SEAL

[37] use the case of the prime p totally split. In this case, the plaintext modulus is large and it

requires the large ciphertext modulus, and it causes large noise growth.

Another pack/unpack system is the complex canonical embedding. That maps an element

of a number field (or ring) to the complex numbers, which are evaluation results by the element

of all conjugate maps of the number fields (or rings). Homomorphism of the conjugate map

enables the homomorphic computation of SIMD operation. HEAAN [10] uses this method in

their encoding. For real number messages, only real part of the complex number is used for each

slot, though computation and space are needed for imaginary part. In the study [32], authors

focus on this issue and improve HEAAN using a maximal real subfield F = Q(ξ) of a cyclotomic

field K = Q(ζ) where ξ = ζ + ζ−1. The plaintext slot structure based on a conjugate-invariant

ring, which is a ring of integers of the maximal real subfield, is real number, since the ξ and its

conjugate elements are real number. Their scheme achieves 2 times parallelism of HEAAN in

the same security level.

Chapter 4

Homomorphic Encryption Scheme Based
on Decomposition Ring

4.1 Introduction

We propose the decomposition ring homomorphic encryption scheme, that is a homomorphic

encryption scheme built on the decomposition ring, which is a subring of cyclotomic ring. By

using the decomposition ring the structure of plaintext slot becomes Zpl , instead of GF(pd) in

conventional schemes on the cyclotomic ring. For homomorphic multiplication of integers, one

can use the full of Zpl slots using the proposed scheme, although in conventional schemes one

can use only one-dimensional subspace GF(p) in each GF(pd) slot. This allows us to realize

fast and compact homomorphic encryption for integer plaintexts. In fact, our benchmark results

indicate that our decomposition ring homomorphic encryption schemes are several times faster

than HElib for integer plaintexts due to its higher parallel computation.

Our perspective: GF(pd) versus Zpl slots. In the Ring-HE schemes based on cyclotomic ring,

its structure of the plaintext slot is known to be Galois field GF(pd) of some degree d. Such

plaintext structure is good for applications that use data represented by elements of Galois field

GF(pd), such as error correcting codes or AES ciphers. However, many applications will use

integers modulo a power of prime pl (i.e., elements in Zpl) rather than elements of Galois field

GF(pd).

We focus on the fact that restricting the cyclotomic ring to its subring called "Decomposition

29

30

Ring", the slot structure shrinks from GF(pd) to Zp. Then, by using Hensel lifting, we can enlarge

the modulus from Zp to Zpl . We believe in that such plaintext structure will be more natural, easy

to handle, and significantly efficient for many applications.

Plaintext space of Ring-HE schemes based on cyclotomic ring is

R/P0 ⊕ · · · ⊕ R/Pg−1 ≃ GF(pd) ⊕ · · · ⊕ GF(pd).

Recall that we can use only 1-dimensional subspace GF(p) = Zp in each d-dimensional slot

GF(pd) for homomorphic multiplication of mod-p integers.

The decomposition ring RZ with respect to prime p is the minimum subring of R in which

the prime p has the same form of prime ideal factorization as in R , that is,

pRZ = p0p1 · · ·pg−1 (4.1)

with the same number g of factors. By the minimality of RZ , the residual fields RZ/pi of each

factor pi must be one-dimensional, that is, isomorphic to Zp. So the plaintext space on RZ will be

(RZ)p ≃ RZ/p0 ⊕ · · · ⊕ RZ/pg−1 ≃ Zp ⊕ · · · ⊕ Zp.

Applying Hensel lift l −1 times, we get (RZ)pl ≃ Zpl ⊕ · · ·⊕Zpl for pl . Thus, the decomposition

ring RZ realizes plaintext slots of integers modulo pl , as desired.

Two bases. We investigate structure of the decomposition ring RZ , following the way in cyclo-

tomic cases given by Lyubashevsky, Peikert, and Regev [39]. Then, we will give two types of

bases of RZ , called η-basis and ξ-basis, which can substitute well for the power(ful) and CRT

bases in cyclotomic cases, respectively.

Construction. Based on the above investigation, we construct two types of homomorphic

encryption schemes over the decomposition ring: DR-FV and DR-BGV. The DR-FV and DR-BGV

schemes realize the FV [17] and the BGV scheme [6] over the decomposition ring, respectively.

We also construct the bootstrap function for our DR-BGV scheme. We show several bounds on

the noise growth occurring among homomorphic computations and prove that both of DR-FV

and DR-BGV schemes are fully homomorphic on modulus of magnitude q = O(λlog λ).

31

Related works. We focus on the wasteful slot structure of such HE schemes based on cyclotomic

ring, and improve the slot structure using the decomposition ring. Kim and Song [32] also focus

on the similar issue and construct HE based on another subring of the cyclotomic ring, called

"conjugate-invariant ring", aiming for efficient homomorphic fixed-point number computation.

4.2 Decomposition Rings and Their Properties

4.2.1 Decomposition Field

Let G = Gal(K |Q) be the Galois group of the m-th cyclotomic field K = Q(ζ) over Q. Let p be

a prime that does not divide m. Recall such p has the prime ideal decomposition of Eq (3.2.2).

The decomposition group GZ of K w.r.t. p is the subgroup of G defined as

GZ
def
= {ρ ∈ G | Pρi = Pi (i = 0, . . . , g − 1)}.

That is, GZ is the subgroup of automorphisms ρ of K that stabilize each prime idealPi lying over

p. Recall the Galois group G = Gal(K |Q) is isomorphic to Z∗m via ρ−1. Since p does not divide

m, p ∈ Z∗m. It is known that the decomposition group GZ is generated by the automorphism ρp

corresponding to the prime p, called the Frobenius map w.r.t. p: GZ = ⟨ρp⟩ ≃ ⟨p⟩ ⊆ Z∗m. The

order of GZ is equal to d = ord×m(p). The fixed field Z = KGZ by GZ is called the decomposition

field of K (w.r.t. p). The decomposition field Z can be characterized as the smallest subfield Z

of K such that Pi ∩ Z does not split in K , so that the prime p factorizes into prime ideals in Z

in much the same way as in K . By the Galois theory, GZ = Gal(K |Z). For degrees, we have

[K : Z] = |GZ | = d, [Z : Q] = n/d = g. The decomposition field Z is itself the Galois extension

of Q and its Galois group Gal(Z |Q) = G/GZ is given by Gal(Z |Q) ≃ Z∗m/⟨p⟩.

4.2.2 Decomposition Ring

The integer ring RZ = R ∩ Z of the decomposition field Z is called the decomposition ring.

Primes ideals over p in the decomposition ring RZ are given by pi = Pi ∩ Z for i = 0, . . . , g − 1,

and the prime p factors into the product of those prime ideals in much the same way as in K:

pRZ = p0 · · ·pg−1. (4.2)

This leads to the decomposition of (RZ)p: (RZ)p ≃ RZ/p0 ⊕ · · · ⊕ RZ/pg−1.

32

For each prime ideal Pi (of R) lying over pi, the Frobenius map ρp acts as the p-th power

automorphism powp(x) = xp on R/Pi:

R −−−−→ R/Pi

ρp
⏐⏐C powp

⏐⏐C
R −−−−→ R/Pi

Then, by definition of RZ = R⟨ρp⟩, any element in RZ/pi must be fixed by powp. By definition of

d, |⟨powp⟩ | = d so [R/Pi : RZ/pi] = d. This means:

RZ/pi = (R/Pi)⟨powp⟩ = Zp.

Thus, we see that all slots of (RZ)p must be one-dimensional: (RZ)p ≃ Zp ⊕ · · · ⊕ Zp.

K = Q(ζ) R = Z(ζ) R/pR GF(pd) ⊕ · · · ⊕ GF(pd)

Z RZ RZ/pRZ Zp ⊕ · · · ⊕ Zp

Q Z Z/pZ

GZ

G

⟨powp⟩

∼

∼

Here we recall Hensel Lifting:

Lemma 2 ([23] Lemma 3, Hensel Lifting) Let p be a prime, let i ≥ 1 be an integer, and let

F,G,Φ ∈ Z[X] be monic integer polynomials, such that F,G are co-prime modulo p, and

F ·G = Φ (mod pi). Then there exist monic polynomials F,G ∈ Z[X] such that F ≡ F (mod pi)
and G ≡ G (mod pi) and F · G = Φ (mod pi+1).

By Hensel-lifting of the factorization of Φm(X) mod p (Eq (3.1)) to modulus pl , we get

factorization of Φm(X) mod pl : Φm(X) ≡ F0(X) · · · Fg−1(X) (mod pl). Here, note that the

number g of irreducible factors and the degree d of each factor remain unchanged in the lifting.

According to this factorization, the ideal pl R of R is factored as pl R = Q0 · · ·Qg−1 with ideals

Qi = (pl, Fi(ζ)) of R.

Then, on the decomposition ring, we get

pl RZ = q0 · · · qg−1 (4.3)

(RZ)pl ≃ Zpl ⊕ · · · ⊕ Zpl (4.4)

33

with qi = Qi ∩ Z and RZ/qi ≃ Zpl . This structure of the decomposition ring (RZ)pl brings us the

plaintext structure of our decomposition ring homomorphic encryption scheme, being composed

of g mod-pl integer slots.

4.2.3 Bases of the decomposition ring RZ

To construct homomorphic encryption schemes using some ring R, we will need two types of

bases of the ring R over Z, one for decoding elements in R ⊗ R into its nearest element in R,

and another one that enables FFT-like fast computations among elements in R. In addition, we

also need some quasi-linear time transformations among vector representations with respect to

the two types of bases. Here, assuming the index m of cyclotomic ring R is prime, we construct

such two types of bases for the decomposition ring RZ , following the cyclotomic ring case given

by Lyubashevsky, Peikert and Regev [39].

The η-basis

Let m be a prime and K = Q(ζ) be the m-th cyclotomic field. For a prime p (" m), let Z be the

decomposition field of K with respect to p.

Fix any set of representatives {t0, . . . , tg−1} of Z∗m/⟨p⟩ ≃ Gal(Z |Q). For i = 0, . . . , g − 1,

define

ηi
def
= TrK |Z (ζ ti) =

∑
a∈⟨p⟩

ζ tia (∈ RZ).

Lemma 3 For i = 0, . . . , g − 1, we have TrZ |Q(ηi) =
∑g−1

i=0 ηi = −1, TrZ |Q(ηi) =
∑g−1

i=0 ηi = −1.

Proof. TrZ |Q(ηi) = TrZ |Q(TrK |Z (ζ ti)) = TrK |Q(ζ ti). So, by Lemma 1, TrZ |Q(ηi) = −1 for any i.

Similarly, TrZ |Q(ηi) = TrZ |Q(TrK |Z (ζ−ti)) = TrK |Q(ζ−ti) = −1. ✷

Lemma 4 For the prime index m, the set {η0, . . . , ηg−1} is a basis of the decomposition ring RZ

(w.r.t. p (" m)) over Z, i.e., RZ = Zη0 + · · · + Zηg−1.

Proof. Since the index m is prime, the cyclotomic ring R has a basis B = {1, ζ, . . . , ζm−2} over

Z. Since ζ is a unit of R, B′ := ζB = {ζ, ζ2, . . . , ζm−1} is also a basis of R over Z. The fixing

group GZ = ⟨ρp⟩ of Z acts on B′ and decomposes it into g orbits ζ ti ⟨p⟩ = {ζ ti, ζ tip, . . . , ζ tipd−1}
(i = 0, . . . , g − 1). An element z =

∑m−1
i=1 ziζ i ∈ RZ that is stable under the action of GZ must

34

have constant integer coefficients over the each orbits ζ ti ⟨p⟩. Hence, z is a Z-linear combination

of {η1, . . . , ηg}. ✷

Definition 6 We call the basis η := (η0, . . . , ηg−1) η-basis of RZ . For any a ∈ RZ , there exists

unique a∈ Zg satisfying a = ηT a. We call such a∈ Zg η-vector of a ∈ RZ .

The ξ-basis

By the choice of ti’s, the Galois group Gal(Z |Q) of Z is given by

Gal(Z |Q) = {ρt0, . . . , ρtg−1}.

Elements a ∈ Z in the decomposition field are regarded as g-dimensional R-vectors through the

canonical embedding σZ : Z → HZ (⊂ CZ∗m/⟨p⟩) defined as σZ (a) = (ρi(a))i∈Z∗m/⟨p⟩. The

g-dimensional R-subspace HZ is as

HZ
def
= {x ∈ CZ∗m/⟨p⟩ : xi = xg−i (∀i ∈ Z∗m/⟨p⟩)}.

Define a g × g matrix ΩZ over RZ as

ΩZ =
(
ρti (η j)

)
0≤i, j<g

(∈ Rg×gZ).

Note that each column of ΩZ is the canonical embedding σZ (η j) of η j . Since the index m is

prime, the Galois group Gal(Z |Q) is cyclic and we can take the representatives {t0, . . . , tg−1} so

that t j ≡ t j (mod ⟨p⟩) with some t ∈ Z∗m for j = 0, . . . , g − 1. Setting η = TrK |Z (ζ), for any i and

j,

ρti (η j) = ρti (ρtj (η)) = ρti ·tj (η) = ρti+j (η) = ηi+ j .

In particular, ΩZ is symmetric. We can show that:

Lemma 5 Ω∗ZΩZ = (TrZ |Q(ηiη j))0≤i, j<g = mIg − d1 · 1T (∈ Zg×g).

35

Proof. For 0 ≤ i, j < g,

ηiη j =
(∑

a∈⟨p⟩
ζ−ati

) (∑
b∈⟨p⟩

ζ btj
)
=

∑
a,b∈⟨p⟩

ζ−ati+btj

=
∑

a∈⟨p⟩

∑
b∈⟨p⟩

ρa(ζ−ti+ba−1tj)

=
∑

a∈⟨p⟩

∑
b∈⟨p⟩

ρa(ζ−ti+btj)

=
∑

b∈⟨p⟩
TrK |Z (ζ−ti+btj).

Here, Suppose i " j. Then, −ti + btj ! 0 (mod m) for any b ∈ ⟨p⟩. Hence, by Lemma 1,

TrZ |Q(ηiη j) =
∑

b∈⟨p⟩
TrK |Q(ζ−ti+btj) = |⟨p⟩ | · (−1) = −d.

If i = j, since TrK |Q(ζ−ti+bti) = m − 1 only if b = 1 and -1 otherwise by Lemma 1,

TrZ |Q(ηiηi) =
∑

b∈⟨p⟩
TrK |Q(ζ−ti+bti)

= m − 1 + (d − 1) · (−1)

= m − d. ✷

Corollary 1 The set
{
m−1(η0 − d), · · · ,m−1(ηg−1 − d)

}
is the dual basis of conjugate η-basis

{η0, · · · , ηg−1}, i.e. for any 0 ≤ i, j < g,

TrZ |Q
(ηi − d

m
· η j

)
= δi j .

In particular, R∨Z = Z
η0−d

m + · · · + Zηg−1−d
m .

Proof. For any i, by Lemma 3 and 5 we have

TrZ |Q
(ηi − d

m
· ηi

)
=

1
m
(m − d) − d

m
· (−1) = 1.

Similarly, for any i " j we have

TrZ |Q
(ηi − d

m
· η j

)
=
−d
m
− d

m
· (−1) = 0 ✷

Define a g × g matrix ΓZ over Z as

ΓZ
def
=

(
ρti

(η j − d
m

))
0≤i, j<g

(∈ Zg×g).

Corollary 1 means that ΓT
ZΩZ = I . Since ΩZ is symmetric,

ΓZΩZ = ΩZΓZ = I . (4.5)

36

Lemma 6 For any b= ΩZa, we have

a = ΓZb =
1
m

(
ΩZb− d

(∑
j

bj
)
· 1

)
.

Proof.

a = ΓZb =
(
ρti (

η j − d
m

)
)

i j
b

=
(1
m

∑
j

ρti (η j − d)bj

)
i

=
1
m

(∑
j

ρti (η j)bj − d
∑

j

bj

)
i

=
1
m

(
ΩZb− d

(∑
j

bj
)
· 1

)
✷

Let q be a power of the prime p. (Later we will use q = pl for the plaintext modulus and

q = pr for the ciphertext modulus of the FV-type scheme.) Let q = q0 be the first ideal that

appears in the factorization of qRZ (Eq (4.3)). Recall that RZ/q ≃ Zq.

Let

Ω
(q)
Z

def
= ΩZ mod q (∈ (RZ)g×gq ≃ Zg×gq)

Ω
(q)
Z is invertible mod q.

Definition 7 Define ξ = (ξ0, . . . , ξg−1) ∈ (RZ)gq by ηT ≡ ξTΩ
(q)
Z (mod q). We call the basis ξ of

(RZ)q over Zq ξ-basis of RZ (with respect to q). For any a ∈ (RZ)q, there exists unique b ∈ Zgq
satisfying that a = ξT b. We call such b ∈ Zgq as ξ-vector of a ∈ (RZ)q.

Lemma 7 For any a ∈ RZ it holds that

a ≡ ηT · a ⇔ a ≡ ξT · (Ω(q)
Z · a) (mod q)

a = ηT · a ⇔ σZ (a) = ΩZa

a ≡ ξT · b (mod q) ⇔ σZ (a) ≡ b (mod q)

Proof. The first claim is the definition of ξ .

Since ΩZ =
(
σZ (η j)

)
0≤ j<g

, a = ηT · a if and only if σZ (a) = ΩZa.

Next,

a = ξT · b ⇔ a ≡ ηT (Ω(q)
Z)−1 · b (mod q)

⇔ σZ (a) ≡ ΩZ (Ω(q)
Z)−1 · b≡ b (mod q) ✷

37

Lemma 8 If a1 = ξT · b1 and a2 = ξT · b2, then a1a2 = ξT · (b1 ⊙ b2).

Proof. σZ (a1a2) = σZ (a1) ⊙ σZ (a2) = b1 ⊙ b2 ✷

4.2.4 Conversion between η- and ξ-vectors

Resolution of unity in RZ mod q

As stated before, by Hensel-lifting the factorization of Φm(X) mod p (Eq (3.1)) to modulus q

which is a power of p, we get factorization of Φm(X) mod q: Φm(X) ≡ F0(X) · · · Fg−1(X)
(mod q). According to this factorization, the ideal qR of R is factored as qR = Q0 · · ·Qg−1 with

ideals Qi = (q, Fi(ζ)) of R.

For each i = 0, . . . , g − 1, let Gi(X) def
=

∏
j"i F j(X) (mod q) and Pi(X) def

= (Gi(X)−1 mod

(q, Fi(X))) · Gi(X) (mod q). It is verified that the set {τi = Pi(ζ)}g−1
i=0 constitutes a resolution of

unity in R mod q, i.e.

τi ≡
⎧⎪⎪⎨
⎪⎪⎩

1 (mod Qi) (i = 0, . . . , g − 1)
0 (mod Q j) (j " i)

and it holds that
g−1∑
i=0

τi ≡ 1, τ2
i ≡ τi, τiτj ≡ 0 (mod q) (j " i).

By the Chinese remainder theorem, the resolution of unity {τi}g−1
i=0 is uniquely determined mod

qR. In the following we take coefficients of each τi from [−q/2, q/2) over the basis B′ =

{ζ, ζ2, . . . , ζm−1} of R.

Lemma 9 For any 0 ≤ i < g it is that τi ∈ RZ , and {τi}g−1
i=0 is also a resolution of unity in RZ

mod q.

Proof. The ideal qRZ factors in RZ as

qRZ = q0q1 · · · qg−1

where qi = Qi ∩ RZ for any i.

Let {τ′i }
g−1
i=0 be a resolution of unity in RZ mod q. Here, we take the coefficients of each τ′i

from [−q/2, q/2) over the η-basis {η0, . . . , ηg−1} of RZ .

38

Then,

τ′i ≡
⎧⎪⎪⎨
⎪⎪⎩

1 (mod qi) (i = 0, . . . , g − 1)
0 (mod q j) (j " i).

Since qi ⊂ Qi for any i, {τ′i }
g−1
i=0 is also a resolution of unity in R mod q. Since the coefficients

of each τ′i over the η-basis are in [−q/2, q/2), by definition of ηi =
∑

a∈⟨p⟩ ζ
tia, their coefficients

over the basis B′ are trivially also in [−q/2, q/2). Hence, by the uniqueness of resolution, it must

be that τ′i = τi for all i. ✷

Using the resolution of unity {τi}g−1
i=0 in RZ , we can compute ai ∈ Zq satisfying a ≡ ai

(mod qi) given a ∈ RZ , as follows:

a mod qi = aτi mod q = aiτi mod q
dividing by τi0→ ai .

Computation of Ω(q)
Z

Now we can compute the matrix Ω(q)
Z =

(
ηi+ j mod q

)
0≤i, j<g

(∈ Zg×gq) by computing the entities

ηi+ j inΩZ as cyclotomic integers and reducing them modulo q (= q0) using the resolution of unity

{τi}g−1
i=0 . Since the matrixΩ(q)

Z has cyclic structure (the (i+1)-th row is a left shift of the i-th row),

it is sufficient to compute its first row. Here, we remark that once we have computed the matrix

Ω
(q)
Z , we can totally forget the original structure of cyclotomic ring R, and all we need is doing

various computations among η- and ξ-vectors (of elements in RZ) with necessary conversion

between them using the matrix Ω(q)
Z .

Computation of b= Ω(q)
Z · a

To convert η-vector aof an element a = ηT · a ∈ RZ to its corresponding ξ-vector b (satisfying

a = ξT · b), by Lemma 7, we need to compute a matrix-vector product b= Ω(q)
Z · a. By Lemma

6, the inverse conversion from ξ-vector b to its corresponding η-vector a = ΓZ · b also can be

computed using a similar matrix-vector product Ω(q)
Z · b. Here, Ω(q)

Z
def
= ΩZ mod q.

By definition of Ω(q)
Z , the j-th component bj of the product b= Ω(q)

Z · a is bj =
∑g−1

i=0 aiηi+ j

(where indexes are mod g and we omit modq). This means that b is the convolution product of

vector η and the reversal vector (a0, ag−1, ag−2, · · · , a1) of a, where η = (ηi)g−1
i=0 is the first row of

Ω
(q)
Z .

39

Define two polynomials f (X) = ∑g−1
i=0 ηi Xi and g(X) = a0 +

∑g−1
i=1 ag−i Xi over Zq. Since b

is the convolution product of η and the reversal vector of a, it holds that f (X)g(X) = ∑g−1
i=0 bi Xi

(mod Xg − 1). The polynomial product f (X)g(X) (mod Xg − 1) can be computed in quasi-linear

time Õ(g) using the FFT multiplication. Thus, we know that conversions between η-vectors a

and ξ-vectors bcan be done in quasi-linear time Õ(g).

Remark In the BGV-type scheme, the ciphertext modulus makes a chain which contains L

modulus q0, · · · , qL−1 using L primes p0, · · · , pL−1 s.t. qi = Π
i
j=0pj . For each modulus qi,

we generate a matrix Ω(qi)
Z in Zg×gqi to convert between η-vector and ξ-vector efficiently. More

precisely, the reason why the method of Section 4.2.4 and 4.2.4 work is that the modulus q factors

completely on the decomposition ring RZ with respect to the prime p. When we choose each

prime pj to satisfy pj ≡ 1 (mod m) then pj factors completely on the cyclotomic ring and thus

also factors completely on the decomposition ring RZ . Therefore, we can generate Ω(pj)
Z (∈ Zg×gpj

)

for such primes pj using the method of Section 4.2.4 and 4.2.4, and we get Ω(qi)
Z by CRT-lifting

the matrices Ω(pj)
Z (j = 0, · · · , i) entity-wise:

Ω
(qi)
Z = CRT(Ω(p0)

Z , · · · ,Ω
(pi)
Z) ∈ Zg×gqi .

4.3 Homomorphic Encryption Based on Decomposition Ring

Now we construct two types of homomorphic encryption schemes over the decomposition ring:

DR-FV and DR-BGV.

4.3.1 The Ring-LWE problem on the decomposition ring

For security of our homomorphic encryption scheme over the decomposition ring, we need

hardness of a variant of the decisional Ring-LWE problem over the decomposition ring. Let

m be a prime. Let RZ be the decomposition ring of the m-th cyclotomic ring R with respect

to some prime p (" m). Let q be a positive integer. For an element s ∈ RZ and a distribution

χ over RZ , define a distribution As,χ on (RZ)q × (RZ)q as follows: First choose an element a

uniformly from (RZ)q and sample an element e according to the distribution χ. Then return the

pair (a, b = as + e mod q).

40

Definition 8 (LWE problem on the decomposition ring)
Let q, χ be as above. The R-DLWEq,χ problem on the decomposition ring RZ asks to distinguish

samples from As,χ with s
u← Zq and (the same number of) samples uniformly chosen from

(RZ)q × (RZ)q.

4.3.2 Security

Recall the search version of Ring-LWE problem is already proved to have a quantum polynomial

time reduction from the approximate shortest vector problem of ideal lattices in any number

field by Lyubashevsky, Peikert, and Regev [38]. They proved equivalence between the search

and the decisional versions of the Ring-LWE problems only for cyclotomic rings. However, it is

not difficult to see that the equivalence holds also over the decomposition rings, since those are

subrings of cyclotomic rings and inherit good properties about prime ideal decomposition from

them.

The key of their proof of equivalence is the existence of prime modulus q for Ring-LWE

problem which totally decomposes into n prime ideal factors: qR = Q0 · · ·Qn−1. (Their residual

fields R/Qi have polynomial order q and we can guess the solution of the Ring-LWE problem

modulo ideal Qi, and then we can verify validity of the guess using the assumed oracle for the

decisional Ring-LWE problem.) Since the decomposition ring RZ is a subring of the cyclotomic

ring R, such modulus q totally decomposes into g prime ideals also in the decomposition ring

RZ : qRZ = q0 · · · qg−1. Using this decomposition, the proof of equivalence by [38] holds also

over the decomposition rings RZ , essentially as it is.

Terada, Nakano, Okumura and Miyaji [48] conducted some experiments regarding lattice

attack against Ring-LWE problem over the decomposition ring. They concluded that the Ring-

LWE problem on the decomposition ring is expected to be as secure as the ordinal Ring-LWE

problem on the cyclotomic ring.

4.3.3 Parameters

Let m be a prime index of cyclotomic ring R. Choose a (small) prime p, distinct from m. Let

d = ord×m(p) be the multiplicative order of p mod m, and g = (m − 1)/d be the degree of the

decomposition ring RZ of R with respect to p. The plaintext modulus t = pl is a power of p and

41

the ciphertext modulus q will be chosen below.

4.3.4 Sampling

We will use the following three types of sampling algorithms regarding as RZ .

The uniform distribution Uq: This is uniform distribution over (Z/qZ)g identified with (Z ∩
(−q/2, q/2]).

The discrete gaussian distribution Gq(σ2): The discrete gaussian distribution Gq(σ2) draws a

g dimension integer vector which rounds a normal gaussian distribution with zero-mean and

variance σ2 to the nearest integer and outputs that integer vector reduced modulo q (into interval

(−q/2, q/2]).

The HWT(h) distribution: The HWT(h) distribution chooses a vector uniformly at random

from {0,±1}g that has h nonzero entries.

Bounds on noises

We analyze bounds of noises according to the way of [15].

Let a =
∑g

i=0 aiηi denote a random element of RZ . The canonical embedding of each ηi has

approximately Euclidean norm
√
φ(m) (=

√
gd). Letting Va be the variance of each coefficient of

a, the variance of a is estimated as Vagd.

When a← Uq then Va is (q − 1)2/12 ≈ q2/12, hence the variance of a is VU = q2gd/12.

When a← Gq(σ2) then the variance of a is VG = σ2gd. When choosing a← HWT(h), the

variance of a is VH = hd.

The random element of RZ is a sum of many independent distributed random variables, hence

its distribution is approximated by a gaussian distribution of the same variance. We use six

standard deviations as a bound on the size of a:
$$a

$$
∞ ≤ 6

√
V . We use 16 σaσb as a bound of

product ab of two random variables both distributed closely to gaussian distributions of variances

σa and σb, respectively. For a product of three random variables with variances σa,σb and σc,

we use 40 σaσbσc.

42

4.3.5 Encoding methods of elements in RZ

Basically, we use η-vectors a∈ Zg to encode elements a = ηT ·ain RZ . To multiply two elements

encoded by η-vectors a and b modulo q, first we convert those η-vectors to corresponding ξ-

vectors modulo q. We can multiply resulting ξ-vectors component-wise, and then re-convert the

result into its corresponding η-vector modulo q. The functions eta_to_xi and xi_to_eta use the

matrix Ω(q)
Z computed in advance. (ηi)g−1

i=0 denotes the first row of Ω(q)
Z .

mult_eta (a, b, q) :

αξ = eta_to_xi(a, q)
βξ = eta_to_xi(b, q)
γi = αiβi mod q (i = 0, . . . , g − 1)

return c = xi_to_eta(γξ, q)

eta_to_xi(a, q) :

a(X) = a0 +
∑g−1

i=1 ag−i Xi

c(X) = ∑g−1
i=0 ηi Xi

b(X) = a(X)c(X) mod (q, Xg − 1)
return bξ = (b0, . . . , bg−1)

xi_to_eta(bξ, q) :

b(X) = b0 +
∑g−1

i=1 bg−i Xi

c(X) = ∑g−1
i=0 ηi Xi

a(X) = b(X)c(X) mod (q, Xg − 1)
t = b0 + · · · + bg−1 mod q

return a= (m−1(ai − dt) mod q)g−1
i=0

These algorithms can be computed by O(g log g) operations of underlying mod q integers by

using the FFT multiplications of degree g polynomials (see Section 4.2.4).

We regard plaintext vectors m ∈ Zgt as ξ-vectors of corresponding elements mξ = ξTm ∈
(RZ)t . By Lemma 8 their products mξm′ξ ∈ (RZ)t encodes the plaintext vector m⊙m′ ∈ Zgt . For a

fixed integer base w, let lw =
⌊
logw(q)

⌋
+1. Any vector a∈ Zgq can be written as a=

∑lw−1
k=0 akwk

with vectors ak ∈ Zlw
w of small entries. Define WD(a) def

=
(
ak

) lw−1
k=0

(
∈ (Zgw)lw

)
.

43

4.3.6 Two types of Homomorphic Encryption Schemes

We construct two types of homomorphic encryption schemes based on the decomposition ring.

The first scheme DR-FV is based on the FV scheme and the second scheme DR-BGV is based on

the BGV scheme.

FV-type

a + b · s ≡
⌊q

t

⌋
· m + e (mod q)

BGV-type

a + b · s ≡ f · m + t · e (mod q)

Here, (a, b) denotes a ciphertext, s denotes a secret key, f is a factor of plaintext m, e denotes a

noise, l is ciphertext level, and t and q are modulus of plaintext and ciphertext.

4.3.7 Scheme Description

Each scheme is given as symmetric key version. The public key version is easily derived as usual.

Our schemes have two functions for HE.Gen. SecretKeyGen() generates a secret key sk. Using

the secret key sk, SwitchKeyGen(x , sk) generates a switching key swk from x to sk. Especially

it gives the evaluation key evk taking x = sk2: evk ← SwitchKeyGen(sk2, sk). Encrypt(sk,m)
encrypts a message m under the secret key sk and outputs a ciphertext ct, and Decrypt(sk, ct)
decrypts the ciphertext ct under the secret key sk and outputs a message m. Given an arithmetic

circuit of function f , HE.Evaluate evaluates the circuit of f on given ciphertexts homomorphically.

It uses Add(ct1, ct2) when evaluating an addition gate and uses Mult(swk, ct1, ct2) when evaluating

a multiplication gate.

DR-FV scheme

We use a ciphertext modulus q = pr and a plaintext modulus t = pl (r > l). Let ∆ = q
t = pr−l .

44

Key Generation. The SecretKeyGen generates a secret key sξ as ξ-vector.

SecretKeyGenDR−FV(prm) :

s ← χkey

sξ ← eta_to_xi(s, q)
return sk = sξ ∈ Zg

This can be computed by O(g log g) operations of underlying mod q integers.

The SwitchKeyGen takes as input a η-vector x and a secret key sξ , and encrypts x under sξ .

The output switching key swk is used to linearize s2 to s in homomorphic multiplication. BFV
lin

is the upper bound of canonical embedding norm of the noise included in the swk. The base-w

decomposition technique is used to make swk be of less noise.

SwitchKeyGenDR−FV(x , sk = sξ, prm) :

For j = 0 to lw − 1

e j ← χerr

h j = w j x + e j mod q

B j
u← Zgq

A j = −B j ⊙ sξ + eta_to_xi(h j, q) mod q

return swk = ((A j, B j)lw−1
j=0 , ν = BFV

lin)
This can be computed by O(lwg log g) operations of underlying mod q integers.

Encryption. The input plaintext m is interpreted as a ξ-vector. In the resulting ciphertext,

BFV
clean denotes the bound of its noise.

EncryptDR−FV(sk = sξ ∈ Zg,m ∈ Zgt , prm) :

e ← χerr

bξ
u← Zgq

aξ = −bξ ⊙ sξ + ∆m + eta_to_xi(e, q) mod q

return ct = (aξ, bξ, ν = BFV
clean)

This can be computed by O(g log g) operations of underlying mod q integers.

45

Decryption. Decryption removes the noise in the ciphertext by taking its right shift (by 1
∆) and

rounding.

DecryptDR−FV(sk = sξ ∈ Zg, ct = (aξ, bξ, ν), prm) :

hξ = aξ + bξ ⊙ sξ mod q

h = xi_to_eta(hξ, q)
z =

⌊
h
∆

⌉
mod t

m = eta_to_xi(z, t)
return m

This can be computed by O(g log g) operations of underlying mod q integers.

Addition. Addition algorithm takes as input two ciphertext ct1 and ct2 and outputs a ciphertext

ct encrypting the sum of underlying plaintexts.

AddDR−FV(ct1 = (a1, b1, ν1), ct2 = (a2, b2, ν2), prm) :

a= a1 + a2 mod q

b= b1 + b2 mod q

ν = ν1 + ν2

return ct = (a, b, ν)
This can be computed by O(g) operations of underlying mod q integers.

Multiplication. Multiplication algorithm takes as input two ciphertext ct1 and ct2 and outputs

a ciphertext ct encrypting the product of underlying plaintexts.

MultDR−FV(swk, ct1 = (a1, b1, ν1), ct2 = (a2, b2, ν2), prm) :

α =
⌊

1
∆ · xi_to_eta(a1 ⊙ a2 mod q2/t)

⌉
β =

⌊
1
∆ · xi_to_eta(a1 ⊙ b2 + a2 ⊙ b1 mod q2/t)

⌉
γ =

⌊
1
∆ · xi_to_eta(b1 ⊙ b2 mod q2/t)

⌉
α′ = eta_to_xi(α, q)
β′ = eta_to_xi(β, q)
γ′ = eta_to_xi(γ, q)
ν = BFV

direct_mult(ν1, ν2)

46

ct = LinearizeDR−FV(swk, (α′, β′, γ′, ν), prm)
return ct

Here, Linearize switches the key in the ciphertext from s2 to s using swk.

LinearizeDR−FV(swk, ct = (α, β, γ, ν), prm) :

(a, b) = KeySwitchDR−FV(swk, γ, prm)
a′ = α + amod q

b′ = β + bmod q

ν′ = ν + BFV
lin

return ct = (a′, b′, ν′)

KeySwitch takes a switching key swk of y and a vector x as input, and returns a ciphertext

encrypting the product x ⊙ y . In the multiplication, swk is an encryption of s2 and x = γ so the

output is a ciphertext of s2γ.

KeySwitchDR−FV(swk = ({A j, B j}lw−1
j=0 , ν), x , prm) :

d = xi_to_eta(x , q)
Decompose d = Σlw−1

j=0 d jw j

d ′j = eta_to_xi(d j, q) for j = 0 · · · lw − 1

A = Σlw−1
j=0 A j ⊙ d ′j mod q

B = Σlw−1
j=0 B j ⊙ d ′j mod q

return (A, B)
As easily verified, the total complexity of MultDR−FV is O(lwg log g) of underlying mod q integers.

DR-BGV scheme

Ciphertext modulus chain: For scaling down ciphertext, the ciphertext modulus makes a chain

which contains L modulus q0, · · · , qL−1 using L primes p0, · · · , pL−1 s.t. qi = Π
i
j=0pj and primes

are pi ≡ 1 (mod m). We call a modulus qi ciphertext as a level-i ciphertext. The level of a

fresh ciphertext is L − 1 and one level is consumed by one multiplication. In the scheme, we use

another special modulus qs to reduce noise.

Key Generation. The SecretKeyGen generates a secret key of the maximum level L − 1.

47

SecretKeyGenDR−BGV(prm) :

s ← χkey

sξ ← eta_to_xi(s, qL−1)
return sk = sξ ∈ Zg

This can be computed by O(g log g) operations of underlying mod qL−1 integers.

In the SwitchingKeyGen, we temporarily enlarge the modulus by multiplying qs, to reduce the

noise occurring.

SwitchKeyGenDR−BGV(x , sk = sξ, prm) :

For j = 0 to lw − 1

e j ← χerr

h j = qsw j x + te j mod qL−1qs

B j
u← ZgqL−1qs

A j = −B j ⊙ sξ + eta_to_xi(h j, qL−1qs) mod qL−1qs

return swk = ((A j, B j)lw−1
j=0 , ν = BBGV

lin)
This can be computed by O(lwg log g) operations of underlying mod qL−1qs integers.

Encryption.
The level of a fresh ciphertext is the maximum level L − 1.

EncryptDR−BGV(sk = sξ ∈ Zg,m ∈ Zgt , prm) :

e ← χerr

e′ = te mod qL−1

bξ
u← ZgqL−1

aξ = −bξ ⊙ sξ + m + eta_to_xi(e′, qL−1) mod qL−1

return ct = (aξ, bξ, f = 1, l = L − 1, ν = BFV
clean)

This can be computed by O(g log g) operations of underlying mod qL−1 integers.

Decryption. Decryption algorithm removes the noise placed in upper digits by taking residue

with respect to plaintext modulus t.

48

DecryptDR−BGV(sk = sξ ∈ Zg, ct = (aξ, bξ, f , l, ν), prm) :

hξ = aξ + bξ ⊙ sξ mod ql

h = xi_to_eta(hξ, ql)
z = f −1h mod t

m = eta_to_xi(z, t)
return m

This can be computed by O(g log g) operations of underlying mod ql integers.

Rescale. Rescale scales down a modulus of a given ciphertext from ql to ql ′ (ql > ql ′), to reduce

its noise. Setting P be ql/ql ′, the noise is scaled down by a factor of 1/P, however an additional

noise term BBGV
scale appears.

Rescale(ct = (aξ, bξ, f , l, ν), l′) :

a= xi_to_eta(aξ, ql)
b= xi_to_eta(bξ, ql)
Fix δa s.t. δa ≡ a (mod P) and δa ≡ 0 (mod t),
δb s.t. δb ≡ b (mod P) and δb ≡ 0 (mod t)

a′ = (a− δa)/P, b′ = (b− δb)/P

a′ξ = eta_to_xi(a′, ql ′)
b′ξ = eta_to_xi(b′, ql ′)
f ′ = f /P mod t

ν′ = ν/P + BBGV
scale

return ct′ = (a′ξ, b
′
ξ, f ′, l′, ν′)

This can be computed by O(g log g) operations of underlying mod ql and mod ql ′ integers.

Addition. Assume the level of ct2 is not greater than the level of ct1.

AddDR−BGV(ct1 = (a1, b1, f1, l1, ν1), ct2 = (a2, b2, f2, l2, ν2), prm) :

ct′2 = (a′2, b
′
2, f ′2, l1, ν

′
2) = Rescale(ct2_msd, l1)

a= f ′2a1 + f1a′2 mod ql1

b= f ′2b1 + f1b′2 mod ql1

49

f = f1 f ′2
ν = ν1 + ν′2

return ct = (a, b, f , l1, ν)
This can be computed by O(g log g) operations of underlying mod ql1 and mod ql2 integers.

Multiplication. Assume the level of ct2 is not greater than the level of ct1. At the last step in

Mult, one level is consumed to reduce the incurred noise.

MultDR−BGV(swk, ct1 = (a1, b1, f1, l1, ν1), ct2 = (a2, b2, f2, l2, ν2), prm) :

ct′2 = (a′2, b
′
2, f ′2, l1, ν

′
2) = Rescale(ct2, l1)

α = a1 ⊙ a′2 mod ql1

β = a1 ⊙ b′2 + a′2 ⊙ b1 mod ql1

γ = b1 ⊙ b′2 mod ql1

f = f1 f ′2
ν = BBGV

direct_mult(ν1, ν′2)
(a′, b′, f , l1, ν′′) = LinearizeDR−BGV(swk, (α, β, γ, f , l1, ν), prm)
ct = Rescale((a′, b′, f , l1, ν′′), l1 − 1)
return ct

Here, the key switching procedure is described below.

LinearizeDR−BGV(swk, ct = (α, β, γ, f , l, ν), prm) :

(a, b, f , l, ν′) = KeySwitchDR−BGV(swk, (γ, f , l), prm)
a′ = α + amod ql

b′ = β + bmod ql

ν′′ = ν + ν′ + Blin

return ct = (a′, b′, f , l, ν′′)

In the last step of KeySwitch, the size of modulus is lowered from qlqs to ql to reduce noise in

the key.

KeySwitchDR−BGV(swk = ({A j, B j}lw−1
j=0 , ν), (x , f , l), prm) :

50

d = xi_to_eta(x , ql) Decompose d = Σlw−1
j=0 d jw j

d ′j = eta_to_xi(d j, ql) for j = 0 · · · lw − 1

A = Σlw−1
j=0 A j ⊙ d ′j mod qlqs

B = Σlw−1
j=0 B j ⊙ d′j mod qlqs

(a, b, f , l, ν′) = Rescale((A, B, f , l + s, ν), l)
return (a, b, f , l, ν′)

The total complexity of MultDR−BGV is sum of O(g log g) operations with respect to the ciphertext

modulus q2 and q1qs, and O(lwg log g) operations with respect to q1.

4.3.8 Tensorial Decomposition

Recall that the canonical embedding of the cyclotomic field K = Q(ζm) is viewed as the tensor

product of the canonical embedding of the prime-factored cyclotomic fields Kl = Q(ζml) where

m =
∏s

l=0 ml , as mentioned in Section 2.3.3. The relation of the equality 2.4 holds on the

decomposition field Z = KGZ and the prime-factored decomposition fields Zl = KGZ

l .

Let d = ord×m(p) be the multiplicative order of p mod m and dl = ord×ml
(p) be for ml . We

assume dl’s are pairwise coprime, then we have the CRT decomposition Z∗m/⟨p⟩ ≃
∏s

l=0 Z
∗
ml
/⟨p⟩.

Using this CRT, we get the relation for the decomposition field,

σZ

(
s⊗

l=0
al

)
=

s⊗
l=0

σ(l)
Z (al)

where al ∈ Zl .

Applying this relation to the η-bases vector ηl of the prime-factored decomposition rings RZl

which is ring of integers of Zl , we get

σZ

(
s⊗

l=0
η l

T

)
=

s⊗
l=0

σ(l)
Z (η l

T), (4.6)

as same as the equation 2.5 for the cyclotomic ring bases.

In our schemes, we transform an element of the decomposition ring into plaintext slots

by canonical embedding. We optimize this transformation using the tensorial decomposition

technique. In the implementation, we split the index m into two primes s.t. m = mLmR. We

generate two transformation matrices ΩR ∈ ZgR×gR
q for mR and ΩL ∈ ZgL×gL

q for mL in the same

way as Ω(q)
Z ∈ Z

g×g
q where dl = Ordml (p), gl = φ(ml)/dl for l = R and L. We use the tensor

matrix ΩR
⊗
ΩL instead of the matrix Ω(q)

Z in the basis transformation.

51

4.3.9 Bootstrap

The bootstrap function removes the noise in the ciphertext accumulated by the homomorphic

operations, and enables the ciphertext to be multiplied or added unlimited times. The way

of bootstrap is to evaluate the decryption circuit homomorphically to the ciphertext under the

encryption of the secret key with respect to the ciphertext. Homomorphic computing of noise

removing and basis conversion in the decryption circuit is very tough task, and this issue causes

bottleneck to use fully homomorphic encryption.

We construct the bootstrap function on our homomorphic encryption schemes based on the

decomposition ring, in which especially the homomorphic basis conversion become simple design

because of the simple slot structure. We also construct homomorphic linear transformation for the

tensor matrix used basis conversion of the bootstrap for our schemes optimized with the tensorial

decomposition technique.

Parameters about modulus

To extract digits, the modulus of the original ciphertext is necessary to be converted to a power

of the same base p to the base of plaintext modulus t = pr , therefore, we convert the original

ciphertext to MSD form and rescale its modulus from q to pR. We take this new modulus pR as

small as it satisfies t = pr < pR < q to lighten bootstrapping process. We define these modulus

parameters as follows:

prm : public parameters for original ciphertext

pt_mod = t(= pr)

ct_mod = q

prmin : public parameters for inner ciphertext

pt_mod = t(= pr)

ct_mod = pR where pr < pR < q

prmout : public parameters for outer ciphertext

pt_mod = pR

ct_mod = Q (large enough)

52

Procedure Description

Key generation for Bootstrapping. Bootstrap key bsk is an encryption of the secret key sk

under the large modulus secret key. The input s is η-vector of secret key sξ .

BootstrapKeyGen(sξ, s) :

s′ξ = eta_to_xi(s) mod Q

bsk = Encrypt(sk = s′ξ, sξ, prmout)
return bsk

Main procedure. The bootstrap process begins from converting to MSD and scaling down of the

original ciphertext. The next step is to calculate a+bs homomorphically which equals to
⌊ q

t
⌋

m+e

implicitly. Then clear lower digits and shift to right homomorphically (homRemoveNoise), as

the result, only message m remains in the outer ciphertext.

In the following Bootstrap, ct denotes the ciphertext under prm, ct′ denotes the ciphertext

under prmin, and CT denotes the ciphertext under prmout.

CTa and CTb are dummy encryptions of the original ciphertext elements. Consider multiplica-

tion of a dummy ciphertext by a normal ciphertext, the secret key in the product does not become

square of secret key, so we use a special multiplicative function Mult_without_linearization that

omits linearization.

Bootstrap(ct = (aξ, bξ), bsk, swkQ) :

ctmsd = ConvToMSD(ct, prmin)
ct′msd = (a′ξ, b

′
ξ) = Rescale(ctmsd, prmin.ct_mod)

CTa = (a′ξ mod Q, 0)
CTb = (b′ξ mod Q, 0)
CTbs = Mult_without_linearization(swkQ,CTb, bsk, prmout)
CTabs = Add(CTa,CTbs, prmout)
CTabs_r = hom_xi_to_eta(CTabs, prmout)
CTm_r = homRemoveNoise(CTabs_r, prmout, prmin, swkQ)
CTm = hom_eta_to_xi(CTm_r, prmout)
CTm_msd = ConvToMSD(CTm, prmout)

53

return ctm_msd

Homomorphic noise remove. Some approaches are proposed for homomorphic noise remove,

we select the method used in HElib by Halevi and Shoup [28]. The input ciphertext ct is supposed

to be an encryption of message m which is extracted like mi = Σ
e−1
j=0aj pj . This algorithm removes

lower n digits.

homRemoveNoise(ct, prmct, prmpt, p, swk):
e = logp(prmpt .ct_mod)
n = e − logp(prmpt .pt_mod)
ctz ← ct

w[0][0] = ctz

For k = 0 to e − 1

cty ← ctz

For j = 0 to min(k , n − 1)
ctv = Mult(swk, w[j][k], w[j][k])
w[j][k + 1] = ctv

If k = e − 1

ctd .a= ctv .a∗ pj

ctd .b= ctv .b∗ pj

ctnoise = Add(ctnoise, ctd)
ct′y = Sub(cty, w[j][k + 1])
cty = div_by_p(ct′y)
w[k + 1][k + 1] = cty

ctm = Sub(ct, ctnoise)
return homRightShift(ctm, n)

Homomorphic linear transformation. Our decryption function converts the basis of the ci-

phertext before and after removing noise, those operations areΩ(q)
Z ×η-vector (hom_eta_to_xi) and

Γ
(q)
Z × ξ-vector (hom_xi_to_eta). The bootstrap procedure executes these linear transformation

homomorphically to the given ciphertext. Halevi and Shoup propose a method to compute the

homomorphic linear transformation in the study [27]. Their method is that, for each dimension

54

i, multiply an encryption of i-th diagonal vector of the matrix by an encryption of i times rotated

data vector (η-vector or ξ-vector) homomorphically, and add the resulting product ciphertexts of

all indexes homomorphically. We adopt this method to our schemes. The function diagonal(M, i)
in the homLinearTrans outputs i-th diagonal vector of the matrix M .

homLinearTrans(swk, rotk,M ∈ Zn×n, ct, prm):
For i = 0 to n − 1

d i = diagonal(M, i)
ctd_i = (d i mod prm.ct_mod, 0) /*dummy encryption*/

ctrot_i = homRotate(rotki, ct, i, prm)
ctprod = Mult_without_linearization(swk, ctd_i, ctrot_i)
ctsum = Add(ctsum, ctprod)

return ctsum

Homomorphic rotation. In the below description, v (i) denotes a vector rotated i times of an

original vector v. The homomorphic rotation function generates a ciphertext ct′ = (a(i)ξ , b
(i)
ξ) from

a given ciphertext ct = (aξ, bξ) under the same secret key sk = sξ , which encrypts i times rotated

message m(i). For example BGV-type ciphertext, ct = (aξ, bξ) satisfies

aξ + bξ sξ ≡ m + teξ (mod q).

Rotating all vectors i times, the vectors satisfy

a(i)ξ + b(i)ξ s(i)ξ ≡ m(i) + te(i)ξ (mod q).

The rotated secret key s(i)ξ can be switched to the original secret key sξ by applying the key

switching method, similar to key switching for homomorphic multiplication.

The RotateKeyGen generates the rotation key rotk, in which each key rotki is an encryption of i

times rotated secret key s(i)ξ .

RotateKeyGen(sξ, sk = sQ, prmout):
For i = 1 to g − 1

sξi = rotate(sξ, i)
si = xi_to_eta(sξi, prmout)

55

rotki = (A j, B j)lw−1
j=0 = SwitchKeyGen(si, sQ, prmout)

return rotk = (rotki)g−1
i=1

The homRotate shifts aξ and bξ in the input ciphertext i times and switches the embraced rotated

key s(i)ξ to the original key sξ using the rotation key rotki of i times rotation. The output is an

encryption of the message rotated i times.

homRotate(rotki = (A j, B j)lw−1
j=0), ct = (aξ, bξ), i, prm) :

a(i)ξ = rotate(aξ, i)
b(i)ξ = rotate(bξ, i)
(a(i), b(i)) = KeySwitch(rotki, b

(i)
ξ , prm)

α(i)
ξ = a(i)ξ + eta_to_xi(a(i), prm)

β(i)
ξ = eta_to_xi(b(i), prm)

return ct = (α(i)
ξ , β

(i)
ξ)

Noise analysis of homomorphic rotation. Here we observe how the norm changes when ξ-

vector is rotated. Let x be an element of RZ . ξ-vector y of x corresponds to the canonical embed-

dingσ(x) = (ρt0(x), ρt1(x), · · · , ρtg−1(x)). When y is rotated i times, the canonical embedding be-

comesσ(x)(i) = (ρti (x), ρt1+i (x), · · · , ρtg−1+i (x)), and equals to (ρt0(ρti (x)), ρt1(ρti (x)), · · · , ρtg−1(ρti (x))).
This is the canonical embedding of ρti (x), that is σ(x)(i) = σ(ρti (x)). Since ρti ’s are Galois maps

and the power basis of RZ is composed of short and nearly orthogonal vectors to each other, the

canonical embedding norm of rotated ξ-vector is almost as same as that of original ξ-vector, i.e.$$ρti (x)
$$
∞ ≈

$$x
$$
∞.

From this observation, we see that rotating ξ-vectors increases less noise.

Homomorphic linear transformation in tensorial decomposition case. When the scheme is

optimized by the tensorial decomposition technique s.t. m =
∏s

l=0 ml , the transformation matrix

with respect to m is the tensor matrix of the transformation matrices with respect to ml . Note that

these matrices with respect to ml are circulant matrices. The homomorphic linear transformation

is realized by multiplying a ciphertext of diagonal vector of the tensor matrix and a ciphertext

rotated partially along with the form of the tensor matrix.

We describe below the case of m factors mR and mL s.t. the transform matrix is Ω(q)
Z =

ΩL
⊗
ΩR.

56

The RotateKeyGen generates the rotation keys forΩR andΩL , those are encryptions of rotated

keys of the original secret key sξ under the secret key sk. The keys in the rotkR are rotated one by

one in units of gR, we call this baby-step rotation. And the keys in the rotkL are jumped gR steps

in units of whole dimension gR · gL, we call this giant-step rotation.

RotateKeyGen(sξ, sk = sQ, prmout):
rotkR = RotateKeyGenUnit(sξ, sk = sQ, jump = 1, unit = gR, prmout)
rotkL = RotateKeyGenUnit(sξ, sk = sQ, jump = gR, unit = gR · gL, prmout)
return (rotkR, rotkL)

RotateKeyGenUnit(sξ, sk = sQ, jump, unit, prmout):
For i = 0 to unit − 1

sξi = rotateUnit(sξ, jump · i, unit)
si = xi_to_eta(sξi, prmout)
rotki = (A j, B j)lw−1

j=0 = SwitchKeyGen(si, sQ, prmout)
return rotk = (rotki)unit−1

i=0

rotateUnit(sξ, k, unit):
For j = 0 to sξ .length − 1

If j mod unit < k Then s′ξ[j − k + unit] = sξ[j]
Else s′ξ[j − k] = sξ[j]

return s′ξ

Combining baby-step and giant-step rotation, we can generate a ciphertext for linear transforma-

tion of the tensor matrix Ω(q)
Z . First, we perform baby-step rotation for ΩR to the input ciphertext

ct, and next we perform giant-step rotation for ΩL to the resulting ciphertext ctR from baby-step

rotation.

homLinearTrans(swk, rotk,Ω(q)
Z ∈ Zn×n, ct, prm):

ctR = homLinearTransRight(swk, rotkR,ΩR ∈ ZgR×gR, ct, prm)
ct′ = homLinearTransLeft(swk, rotkL,ΩL ∈ ZgL×gL, ctR, prm)
return ct′

57

homLinearTransRight(swk, rotkR,ΩR ∈ ZgR×gR, ct, prm):
For i = 0 to gR − 1

For j = 0 to gL − 1

For k = 0 to gR − 1

d i = d i || diagonal(ΩR, i)[k]
ctd_i = (d i mod prm.ct_mod, 0) /*dummy encryption*/

ctrot_i = homRotateUnit(rotkR[i], ct, i, gR, prm)
ctprod = Mult_without_linearization(swk, ctd_i, ctrot_i)
ctsum = Add(ctsum, ctprod)

return ctsum

homLinearTransLeft(swk, rotkL,ΩL ∈ ZgL×gL, ctR, prm):
For i = 0 to gL − 1

For k = 0 to gL − 1

For j = 0 to gR − 1

d i = d i || diagonal(ΩL, i)[k]
ctd_i = (d i mod prm.ct_mod, 0) /*dummy encryption*/

ctrot_i = homRotateUnit(rotkL[i], ctR, gR · i, gR · gL, prm)
ctprod = Mult_without_linearization(swk, ctd_i, ctrot_i)
ctsum = Add(ctsum, ctprod)

return ctsum

homRotateUnit(rotki = (A j, B j)lw−1
j=0), ct = (aξ, bξ), i, unit, prm) :

a(i)ξ = rotateUnit(aξ, i, unit)
b(i)ξ = rotateUnit(bξ, i, unit)
(a(i), b(i)) = KeySwitch(rotki, b

(i)
ξ , prm)

α(i)
ξ = a(i)ξ + eta_to_xi(a(i), prm)

β(i)
ξ = eta_to_xi(b(i), prm)

return ct = (α(i)
ξ , β

(i)
ξ)

58

Related works. For high dimensional ring, the homomorphic linear transformation algorithm

rotates the data vector for many indexes using many switching keys of the indexes, it takes much

time and consumes large key space. HElib improves the homomorphic linear transformation

algorithm applying some strategies in the work [27], [28] and [29]. Here we introduce their

strategies focus on the rotation of the data vector.

Let D be the dimension. As observed in the work [27], we can multiply an D × D matrix M

by a D-dimensional column vector v by computing

M × v =
∑

i∈[D]
diagonal(M, i) × rotate(v, i).

For computing every rotate(v, i), the work [28] applies the baby-step/giant-step strategy. They

divide the i-steps jump to one giant jump with gk-steps (0 ≤ k < h) and one baby jump with

j-steps (0 ≤ j < g),

rotate(v, i) = rotate(v, j) ◦ rotate(v, gk)

where i = gk + j, h = ⌈D/g⌉. For all rotations (0 ≤ i < D), h keys for giant-step rotation and

g keys for baby-step rotation are required. In [28], they set g = ⌈
√

D⌉, then h = O(
√

D) and

g = O(
√

D), and the total key size is O(
√

D). They reduce the number of the rotation keys and

also the number of the rotation operations from O(D) to O(
√

D).
Next in [29], they study reducing the number of homomorphic addition. They change from

adding rotations of all indexes to rotating sum of baby-step rotations with giant-step operation.

Let the constant ci = diagonal(M, i) in short.

M × v =
∑

i∈[D]
ci × rotate(v, i) =

∑
k∈[h]

rotate

(∑
j∈[g]

c′ × rotate(v, j), gk

)
, (4.7)

where c′ = rotate(cj+gk,−gk). The number of the homomorphic additions reduce from O(D) to

O(
√

D), and the number of the homomorphic rotation is also the same.

Here we observe the case when the matrix M is a tensor matrix. For example when m factors

mR and mL s.t. Ω(q)
Z = ΩL

⊗
ΩR and the dimension of the ΩR is gR, the baby-step rotation in

4.7 (rotate(v, j)) rotates every gR elements in the vector v partially, whereas rotates the vector in

whole in the case of the normal matrix.

It is direct to see that:

59

Theorem 2 The decomposition ring homomorphic encryption schemes DR-FV and DR-BGV are

indistinguishably secure under the chosen plaintext attack if the R-DLWEq,χkey,χerr problem on

the decomposition ring RZ is hard.

For correctness we have the following theorem. (The proof is in 4.5)

Theorem 3 The decomposition ring homomorphic encryption schemes DR-FV and DR-BGV will

be fully homomorphic under circular security assumption (i.e., an encryption of secret key s does

not leak any information about s) by taking ciphertext modulus q = O(λlog λ) for DR-FV , and

pi = Ω(
√
λ) (i = 1, . . . , L = Ω(log λ)) and qs = Ω(

√
λ) for DR-BGV.

4.4 Norms on the decomposition ring

Let Z = Q(RZ) be the quotient field of the decomposition ring RZ . Norms of a ∈ Z are defined

by

$$a
$$

2
def
=

$$σZ (a)
$$

2,
$$a

$$
∞

def
=

$$σZ (a)
$$
∞.

Lemma 10 For any a, b ∈ Z , we have

$$ab
$$
∞ ≤

$$a
$$
∞ ·

$$b
$$
∞.

Proof.
$$ab

$$
∞ =

$$σZ (ab)
$$
∞ =

$$σZ (a) ⊙ σZ (b)
$$
∞ ≤

$$σZ (a)
$$
∞ ·

$$σZ (b)
$$
∞ =

$$a
$$
∞ ·

$$b
$$
∞. ✷

In the following, ameans the η-vector of given a = ηT · a∈ RZ .

Lemma 11 (1) For any a ∈ Z ,
$$a

$$
2 ≤

√
m
$$a$$2.

(2) For any a∈ Rg,
$$a$$2 ≤

$$a
$$

2.

(3) If a ∈ Rg is far from being proportional to vector 1 (far from constants in short), we have$$a$$2 ≈
1√
m

$$a
$$

2.

Proof. (1) By Lemma 7, σZ (a) = ΩZaand by Lemma 5

Ω∗ZΩZ = mIg − d1 · 1T.

The right-hand side matrix has eigenvalues g−1 times of m and 1 with corresponding eigenvectors

(1,−1, 0, · · · , 0), (1, 0,−1, 0, · · · , 0), . . ., (1, 0, · · · , 0,−1), (1, 1, · · · , 1). So, the symmetric matrix

60

Ω∗ZΩZ can be diagonalized to Diag(m, · · · ,m, 1) by an orthogonal transformation, and we have

s1(ΩZ) =
√

m. This means
$$a

$$
2 ≤

√
m
$$a$$2.

(2), (3) Conversely, a = (ΩZ)−1σZ (a) = ΓZσZ (a). Similarly as above, the matrix Γ∗ZΓZ can be

diagonalized to Diag(1/m, · · · , 1/m, 1) by the orthogonal transformation. Hence, s1(ΓZ) = 1 and$$a$$2 ≤
$$a

$$
2. Since almost all of the eigenvalues of Γ∗ZΓZ are 1/m, except 1 for eigenvector

(1, 1, · · · , 1), if ais far from being proportional to the eigenvector (1, 1, · · · , 1),
$$a$$2 ≈

1√
m

$$a
$$

2

✷

Lemma 12 (1) For any a ∈ Z ,
$$a

$$
∞ ≤

√mg
$$a$$∞.

(2) For any a∈ Rg,
$$a$$∞ ≤ √g$$a

$$
∞.

(3) If a is far from constants, we have
$$a$$∞ !

√
g/m

$$a
$$
∞.

Proof. (1) By Lemma 11-(1),
$$a

$$
∞ ≤

$$a
$$

2 ≤
√

m
$$a$$2 ≤

√mg
$$a$$∞.

(2) By Lemma 11-(2),
$$a$$∞ ≤ $$a$$2 ≤

$$a
$$

2 ≤
√
g
$$a

$$
∞.

(3) By Lemma 11-(3),
$$a$$∞ ≤ $$a$$2 ≈

1√
m

$$a
$$

2 ≤
√
g/m

$$a
$$
∞. ✷

Subgaussian elements. We call a random variable a ∈ Z subgaussian with parameter s if

corresponding random variable σZ (a) on HZ is subgaussian with parameter s.

Lemma 13 (Claim 2.1, Claim 2.4 [39]) Let ai be independent subgaussian random variables

over Z with parameter si (i = 1, 2). Then,

1. The sum a1 + a2 is subgaussian with parameter
√

s2
1 + s2

2.

2. For any a2 fixed, the product a1 · a2 is subgaussian with parameter
$$a2

$$
∞s1.

Lemma 14 Let abe a subgaussian random variable over Rg of parameter s. Then, a = ηT · a is

subgaussian over Z of parameter
√

ms.

Proof. By Lemma 7 σZ (a) = ΩZa. As seen in the proof of Lemma 11, s1(ΩZ) =
√

m. Hence,

σZ (a) is subgaussian of parameter
√

ms. ✷

4.5 Correctness

We evaluate sizes of noises using their canonical embedding norms.

61

4.5.1 FV-type scheme DR-FV

Definition 9 (The noise term in FV-type scheme) Let (a, b)
∈ R2

Z be a ciphertext pair designed for a message m ∈ RZ under a secret key s ∈ RZ . When

given ((a, b), s,m), the smallest noise term e ∈ RZ satisfying

a + bs = ∆m + e + kq

for some k ∈ RZ called the inherent noise term of (a, b) for a message m.

Noise bound for correctness. Set y = a + bs = ∆m + e (mod q). Then,

y

∆
=

t
q
(q

t
m + e) = m +

t
q

e (mod q)

If
$$ t

q e
$$ < 1

2 then decryption works correctly. By 12-(3), to satisfy this inequality,

√
g

m
t
q
$$e

$$
∞ <

1
2

is required. We define BFV
correct

def
=

q
2t

√
m
g . If the noise term e in a given ciphertext satisfies$$e

$$
∞ < BFV

correct then the ciphertext can be decrypted correctly.

Estimate of BFV
clean. Let e be a noise sampled in EncryptDR−FV. Then

BFV
clean =

$$e
$$
∞ = σ

√
gd.

Estimate of BFV
direct_mult. Let (a′, b′)be the resulting ciphertext of MultDR−FV(swk, (a1, b1, ν1), (a2, b2, ν2)),

where swk is ((Aj, Bj)lw−1
j=0 , ν = BFV

lin) = SwitchKeyGenDR−FV(s2, sk = s) satisfies Σlw−1
j=0 (Aj+Bj s) =

Σlw−1
j=0 (w j s2 + ej) mod q. Let α, β, γ be as in MultDR−FV and ϵα, ϵβ, ϵγ be their rounding noises in

62

(−1
2,

1
2]. Set (d0, · · · , dlw−1) = WD(γ). Then,

α + βs + γs2 =
1
∆
(a1a2 mod q2/t) + ϵα

+ (1
∆
(a1b2 + a2b1 mod q2/t) + ϵβ)s

+ (1
∆
(b1b2 mod q2/t) + ϵγ)s2

=
1
∆
(a1 + b1s)(a2 + b2s) + (ϵα + ϵβs + ϵγs2)

=
1
∆
(∆m1 + e1)(∆m2 + e2) + (ϵα + ϵβs + ϵγs2)

= ∆m1m2 + (m1e2 + m2e1) + e1e2/∆

+ (ϵα + ϵβs + ϵγs2)

Setting e′ = (m1e2+m2e1)+e1e2/∆+(ϵα+ϵβs+ϵγs2), we have BFV
direct_mult(ν1, ν2) = t

√
3gd(ν1+

ν2) + t
qν1ν2 +

√
3gd + 8d

√
gh
3 + 20hd

√
gd
3 , since

$$e′
$$
∞ ≤ (

$$m1
$$
∞ν2 +

$$m2
$$
∞ν1) + ν1ν2/∆

+ (
$$ϵα$$∞ + $$ϵβs

$$
∞ +

$$ϵγs2$$
∞)

≤ t
√

3gd(ν1 + ν2) +
t
q
ν1ν2

+
√

3gd + 8d

√
gh
3 + 20hd

√
gd
3 .

Estimate of BFV
lin . Suppose an input ciphertext (α, β, γ) of LinearizeDR−FV satisfies α+ βs+γs2 =

∆m + e mod q and its noise bound is ν. Let (a′, b′) be the output ciphertext. Generate a

switching key as swk = ((Aj, Bj)lw−1
j=0 , νswk) = SwitchKeyGenDR−FV(s2, sk = s), which satisfies

Σlw−1
j=0 (Aj + Bj s) = Σlw−1

j=0 (w j s2 + ej) mod q. Let (d0, · · · , dlw−1) = WD(γ). Then,

a′ + b′s = (α + Σlw−1
j=0 Aj dj) + (β + Σlw−1

j=0 Bj dj)s mod q

= α + βs + Σlw−1
j=0 (Aj + Bj s)dj mod q

= α + βs + Σlw−1
j=0 (w j s2 + ej)dj mod q

= α + βs + γs2 + Σlw−1
j=0 ej dj mod q

So, it satisfies that
$$a′ + b′s

$$
∞ ≤ ν +

$$Σlw−1
j=0 ej dj

$$
∞.

63

Therefore,

BFV
lin =

$$Σlw−1
j=0 ej dj

$$
∞ = 16lwσ

√
gdw

√
gd/12 = 8√

3
lwσgdw.

Noise bound for MultDR−FV. The noise size of the output ciphertext of MultDR−FV is

νDR−FV
mult = BFV

direct_mult + BFV
lin

= t
√

3gd(ν1 + ν2) +
t
q
ν1ν2

+
√

3gd + 8d

√
gh
3 + 20hd

√
gd
3

+
8√
3

lwσgdw.

Proof of Theorem 3 for DR-FV. By Lemma 4 of [5], we can implement DecryptDR−BGV

algorithm by some circuit of level Ldec = O(log λ).
Let ct′ be the ciphertext after Ldec times multiplications and ν′ be the bound of the canonical

embedding noise of ct′. Then if ν′ ≤ BFV
correct, then the scheme can homomorphically evaluate its

own DecryptDR−FV circuit and will be fully homomorphic under circular security assumption.

Now we show ν′ ≤ BFV
correct as follows: The size of each parameter is g = O(λ), h = O(1), t =

O(1), and we suppose d = O(log λ) = Õ(1). Two fresh ciphertexts have noises of size ν1 =

O(
√
λ), ν2 = O(

√
λ). Then, by repeating the multiplication, the noise bound of the resulting

ciphertext becomes as

νDR−FV
mult = Õ(

√
λ)(ν1 + ν2) +

t
q
ν1ν2

+ Õ(
√
λ) + Õ(

√
λ) + Õ(

√
λ) + Õ(λ)

This shows that the increase ratio of νDR−FV
mult by one multiplication is Õ(

√
λ). It is because,

the second term is t
qν1ν2 ≤ t

q BFV
correctνi =

1
2

√
m
g νi (i = 1 or 2), so the increase ratio of second term

is Õ(1) and it is smaller than that of the first term Õ(
√
λ).

Thus νDR−FV
mult increases by the factor of Õ(

√
λ) for each multiplication, and the factor is of

log2(
√
λ) = O(log λ) bits. After Ldec times multiplication, the noise bound ν′ is O(log(λlog λ))

bit.

On the other hand, taking q = O(λlog λ) as assumption of the Theorem 3, BFV
correct =

q
2t

√
m
g =

O(λlog λ) and it is O(log(λlog λ)) bit. Therefore, we can take the modulus to satisfy ν′ ≤ BFV
correct.

✷

64

4.5.2 BGV-type scheme DR-BGV

Definition 10 (The noise term in BGV-type scheme) Let

(a, b) ∈ R2
Z be a ciphertext pair designed for a message m ∈ RZ under a secret key s ∈ RZ . When

given ((a, b), s,m, l) where l is level, a noise e ∈ RZ is uniquely determined by the equation

a + bs = m + te + kql

for some k ∈ RZ . Note that m + te is not necessarily lower than ql . We define the value m + te as

the noise term of ((a, b), s,m, l).

Noise bound for correctness. Let y = m+ te. If
$$y$$ < ql

2 then decryption works correctly. By

12-(3), to satisfy this inequality,
√
g

m
$$y$$∞ < ql

2

is required. We define BBGV
correct

def
=

ql
2

√
m
g . If the inherent noise y in a given level-l ciphertext

satisfies
$$y$$∞ < BBGV

correct then the ciphertext can be decrypted correctly.

Estimate of BBGV
clean. For a fresh ciphertext, the upper bound of its inherent noise is BBGV

clean =

t
√
gd(
√

3 + 6σ) since

$$m + te
$$
∞ ≤

$$m
$$
∞ + t

$$e
$$
∞

≤ t
√

3gd + t6σ
√
gd = t

√
gd(
√

3 + 6σ).

Estimate of BBGV
scale. Let a scaled ciphertext from ql to ql ′ be (a′, b′, f , l′, ν′) = Rescale((a, b, f , l, ν), l′),

and write its inherent noise as y. Set P = ql
ql′

and fix δa and δb s.t. δa ≡ a (mod P) and δa ≡ 0

(mod t), δb ≡ b (mod P) and δb ≡ 0 (mod t). Then, we have

$$a′ + b′s
$$
∞ ≤

1
P
$$a + bs

$$
∞ +

1
P
$$δa + δbs

$$
∞

≤ ν

P
+

1
P
(6

√
P2gd/12 + 16

√
P2gd/12

√
hd)

≤ ν

P
+ t(

√
3gd + 8d

√
gh/3).

Thus, BBGV
scale = t(

√
3gd + 8d

√
gh/3).

65

Estimate of BBGV
direct_mult. Let (a1, b1, f1, ν1) and (a2, b2, f2, ν2) be input ciphertexts of MultDR−BGV

and compute α, β, γ according to MultDR−BGV. Then,

α + βs + γs2 = a1a2 + (a1b2 + a2b1)s + b1b2s2 mod ql

= (a1 + b1s)(a2 + b2s) mod ql

This means that Bdirect_mult(ν1, ν2) = ν1ν2.

Estimate of BBGV
lin . Suppose an input ciphertext (α, β, γ) of LinearizeDR−BGV satisfies α + βs +

γs2 ≡ m + te (mod ql) and its noise is bound by ν. Let (a′, b′) be the output ciphertext of

LinearizeDR−BGV with input (α, β, γ). Generate a switching key swk = ((Aj, Bj)lw−1
j=0 , νswk) =

SwitchKeyGenDR−BGV(s2, sk = s), which satisfies Σlw−1
j=0 (Aj + Bj s) = Σlw−1

j=0 (qsw j s2 + tej) mod

qL−1qs. Let (d0, · · · , dlw−1) = WD(γ) and A = Σlw−1
j=0 Aj dj mod qlqs, B = Σlw−1

j=0 and Bj dj mod

qlqs. Then,

A + Bs = Σlw−1
j=0 (Aj + Bj s)dj mod qlqs

= Σlw−1
j=0 (qsw

j s2 + tej)dj mod qlqs

= qsγs2 + tΣlw−1
j=0 ej dj mod qlqs

After scaling from qlqs to ql , i.e. (a, b, f , l, ν′) = Rescale((A, B, f , l + s, ν), l), it satisfies that

a + bs = γs2 +
t
qs
Σlw−1

j=0 ej dj + ek mod ql .

where ek is a rounding noise added by Rescale satisfying
$$ek

$$
∞ < BBGV

scale. Now we see that

a′ + b′s = α + a + (β + b)s mod ql

= α + βs + a + bs mod ql

= α + βs + γs2 +
t
qs
Σlw−1

j=0 ej dj + ek mod ql

Then,
$$a′ + b′s

$$
∞ ≤ ν +

t
qs

$$Σlw−1
j=0 ej dj

$$
∞ +

$$ek
$$
∞,

where
t
qs

$$Σlw−1
j=0 ej dj

$$
∞ ≤

t
qs

16lwσ
√
gdw

√
gd/12

≤ 8tlwσgdw/
√

3qs .

66

Thus, we have Blin = 8tlwσgdw/
√

3qs.

Noise bound for MultDR−BGV. In MultDR−BGV, the noise bound of output ciphertext of LinearizeDR−BGV

is ν′′ = ν1ν′2 + BBGV
lin + BBGV

scale, where ν′2 is a noise bound of ct2 rescaled from ql2 to ql1 . After

linearization, the noise is reduced by Rescale((a′, b′, f , l1, ν′′), l1 − 1). Thus, the noise bound of

one multiplication is as follows:

νDR−BGV
mult =

(
ν1(

ql1
ql2
ν2 + t(

√
3gd + 8d

√
gh/3))

+
8tlwσgdw√

3qs
+ t(

√
3gd + 8d

√
gh/3)

) ql1−1
ql1

+ t(
√

3gd + 8d
√
gh/3).

Proof of Theorem 3 for DR-BGV. By Lemma 4 of [5], we can implement DecryptDR−BGV

algorithm by some circuit of level Ldec = O(log λ).
Let ct′ be the ciphertext after Ldec times multiplications, L be the maximum level in the

system parameter, l′ = L−Ldec be the level of ct′ and ν′ be the bound of the canonical embedding

noise of ct′. Then if ν′ ≤ BBGV
correct(l′), then the scheme can homomorphically evaluate its own

DecryptDR−BGV circuit and will be fully homomorphic under circular security assumption.

Now we show ν′ ≤ BBGV
correct(l′) as follows:

The size of each parameter is g = O(λ), h = O(1), t = O(1), and we suppose d = O(log λ) =
Õ(1), then the size of noise of a fresh ciphertext is 3.2

√
gd = Õ(

√
λ).

From assumption of Theorem 3, pi = Ω(
√
λ) (i.e. ql−1

ql
= 1
Ω(
√
λ)) and qs = Ω(

√
λ). Two fresh

ciphertexts have noises of size ν1 = Õ(
√
λ), ν2 = Õ(

√
λ). Then, by repeating the multiplication,

the noise bound of the resulting ciphertext becomes as

νDR−BGV
mult =

(
Õ(
√
λ)(ql1

ql2
Õ(
√
λ) + Õ(

√
λ)) + Õ(λ)

Ω(
√
λ)

+ Õ(
√
λ)

) 1
Ω(
√
λ)
+ Õ(
√
λ)

= Õ(
√
λ).

This shows that after multiple multiplications the noise bound of result ciphertext always keeps

Õ(
√
λ).

We denote the bound for correctness of level-l ciphertext BBGV
correct(l) (=

ql
2

√
m
g). Since

√
m
g =

67

Õ(1) and q0 = O(
√
λ), BBGV

correct(0) = Õ(
√
λ). Thus, νDR−BGV

mult = Õ(
√
λ) < Õ(

√
λ) = BBGV

correct(0) ≤
BBGV

correct(l) for any level l. Therefore ν′ ≤ BBGV
correct(l′). ✷

4.5.3 Efficiency

Here, we compare efficiency of DR-FV (or DR-BGV) to the conventional HE scheme on the

cyclotomic ring (CR-HE for short). In CR-HE, the ring dimension is n = φ(m), the number of

slots is g = n/d and the dimension of each slot is d. So, one can encrypt g integer plaintexts

into a single ciphertext of n (= gd) dimension. On the contrary, in DR-FV (or DR-BGV), the ring

dimension and the number of slots are both g and the dimension of each slot is 1. One can encrypt

g integer plaintexts into a single ciphertext of the same dimension g. Thus, on the same level

of security (i.e. same dimension), DR-FV (or DR-BGV) can handle d times as many plaintexts

as CR-HE in a single ciphertext. This means that DR-FV (or DR-BGV) achieves more faster and

compact HE than conventional CR-HE for integer plaintexts. More concrete benchmark results

are given in Section 4.6.

4.6 Benchmark Results

Results of decomposition ring homomorphic encryption scheme. To verify the effect of our

slot structure on the decomposition ring, we implemented our two decomposition ring homo-

morphic encryption scheme DR-FV and DR-BGV, using the C++ language and performed several

experiments using different parameters, comparing efficiency of our implementation of DR-FV,

DR-BGV and the homomorphic encryption library HElib by Halevi and Shoup [27], which is based

on the BGV scheme over ordinal cyclotomic rings [6]. SEAL [37] is a homomorphic encryption

library of FV-type. Recall that our target plaintext space is a power of small prime since we think

many applications will use such plaintext modulus (e.g. 2l), however in the CRT batching of

SEAL, the plaintext modulus t is required to be t ≡ 1 (mod m) and cannot be a power of small

prime. For this reason, we do not compare our schemes with SEAL.

For notation of parameters, see Section 4.3.3. As common parameters, we choose four values

of prime m so that the m-th cyclotomic ring R will have as many numbers of plaintext slots (i.e.,

large g and small d values) as possible. The plaintext modulus t = 2l is fixed as l = 8. The

noise parameter serr =
√

2πσerr is fixed as σerr = 3.2. The ciphertext modulus q of bit-length r

68

is chosen as small as possible so that it enables homomorphic evaluation of exponentiation by 28

(i.e., Enc(s,m)28) with respect to each implementation. In the DR-FV, the modulus is q = 2r with

r in Table 1. In the BGV-type schemes (DR-BGV and HElib), the modulus is q8 = p0 · · · p8qs and

we describe the bit-length r of q8 in Table 4.1. Table 4.1 summarizes the chosen parameters.

Assuming that there is no special attack utilizing the particular algebraic structure of involving

rings, corresponding security parameters λ are estimated using the lwe-estimator-9302d4204b4f

by [4, 2].

m g d l r (DR-FV) r (DR-BGV) r (HElib)

par-127 127 18 7 8 162 189 135

par-8191 8191 630 13 8 210 247 250

par-43691 43691 1285 34 8 234 258 256

par-131071 131071 7710 17 8 242 261 -

Table 4.1: Chosen parameters.

Table 4.2 shows timing results for HElib in milliseconds on Intel Celeron(R) CPU G1840 @

2.80GHz ʷ 2. (We could not perform the test for par-131071 due to shortage of memory.)

λ Enc Dec Add Mult Exp-by-28

par-127 26 0.23 0.18 0.00 0.66 4.78

par-8191 92 30.45 210.77 0.84 107.53 512.64

par-43691 237 268.00 5158.44 4.74 634.69 4187.81

par-131071 - - - - - -

Table 4.2: Timing results of HElib on mod-2l integer plaintexts.

The secret key is chosen uniformly random among binary vectors of Hamming weight 64 over

the power basis (default of HElib) and we encrypt g number of mod-2l integer plaintexts into a

single HElib ciphertext using plaintext slots. As seen in Section 2.3.2, HElib basically realizes

GF(2d) arithmetic in each of g slots. If we want to encrypt mod-2l integer plaintexts on slots and

to homomorphically evaluate on them, we can use only 1-dimensional constant polynomials in

each d(= n/g)-dimensional slots. This should cause certain waste in time and space. In fact, for

69

example, timings for par-43691 (g = 1285) is much larger than two times of those for par-8191

(g = 630) while being the ratio of g is 1285/630 ≈ 2. This indicates that the HElib scheme cannot

handle many mod-2l integer slots with high parallelism. So, to encrypt large number of mod-2l

integer plaintexts using HElib, we have no choice but to prepare many ciphertexts, each of which

encrypts a divided set of small number of plaintexts on their slots.

On the other hand, Table 4.3 and Table 4.4 shows timing results (also in milliseconds on

Intel Celeron(R) CPU G1840 @ 2.80GHz ʷ 2) for our DR-FV scheme and DR-BGV scheme,

respectively.

λ Enc Dec Add Mult Exp-by-28

par-127 - 0.14 0.12 0.00 0.57 4.47

par-8191 29 7.39 7.37 0.03 39.43 318.65

par-43691 32 17.38 17.19 0.11 92.14 741.42

par-131071 91 104.33 103.93 0.97 574.44 4620.22

Table 4.3: Timing results of DR-FV on mod-2l integer plaintexts.

λ Enc Dec Add Mult Exp-by-28

par-127 - 0.06 0.08 0.00 0.54 3.53

par-8191 29 2.49 2.35 0.24 21.23 127.34

par-43691 32 5.17 5.19 0.59 50.85 293.52

par-131071 84 30.14 29.35 3.70 282.11 1678.52

Table 4.4: Timing results of DR-BGV on mod-2l integer plaintexts.

The secret key is chosen uniformly random among binary vectors of Hamming weight 64 over

η-basis and we encrypt g number of mod-2l integer plaintexts into a single DR-FV or DR-BGV

ciphertext. As seen, DR-BGV scheme is a little bit faster than DR-FV scheme, due to the effect of

rescaling ciphertext modulus to the smaller ones after linearization. In both schemes, timings are

approximately linear with respect to the number of slots g. This means that the DR-FV and DR-

BGV schemes can handle many mod-2l slots with high parallelism, as expected. We can encrypt

large number of mod-2l integer plaintexts into a single DR-FV or DR-BGV ciphertext using mod-2l

slots without waste, and can homomorphically compute on them with high parallelism.

70

Then, which is faster to encrypt many numbers of mod-2l integer plaintexts between the

following two cases?

(1) A single DR-BGV ciphertext with many plaintext slots.

(2) Many HElib ciphertexts with small number of plaintext slots.

The result for par-131071 of Table 4.4 shows we can encrypt 7710 mod-2l integer slots in a single

DR-BGV ciphertext with security parameter λ = 84 with timing:

(30.14, 29.35, 3.70, 282.11, 1678.52)

On a while, the result for par-8191 of Table 4.2 shows one can encrypt the same number of 7710

mod-2l integer slots using
⌈
7710/630

⌉
= 13 ciphertexts with security parameter λ = 92. The 13

times of the line par-8191 of Table 4.2 is

(395.85, 2740.01, 10.92, 1397.89, 6664.32).

Thus, our benchmark indicates that Case (1) (a single DR-BGV ciphertext with many slots) is

significantly faster than Case (2) (many HElib ciphertexts with small number of plaintext slots)

under the similar level of security parameters.

Result of Bootstrap. We implemented our bootstrap procedure using C++ language and per-

formed that on Intel Xeon(R) CPU E3-1505M v5 @ 2.80GHz ʷ 8 in combination with our

DR-BGV scheme. The noise parameter serr =
√

2πσerr is fixed as σerr = 3.2. We used small

parameters as an initial experiment and we used a prime p = 2. Table 4.5 shows parameters of

the rings composing the tensorial ring.

m g d t

Right Ring 257 16 16 3

Left Ring 127 18 7 3

Table 4.5: Chosen ring parameters for bootstrap.

In the bootstrap procedure, we use three parameter sets for plaintext modulus and ciphertext

modulus. Those are prm for original ciphertext, prmin for the inner ciphertext and prmout for

71

the outer ciphertext. In this experiment, we fixed the plaintext modulus as 28. The ciphertext

modulus 219 in prmin is the smallest size to success rescaling. To bootstrap this ciphertext, the

number of multiplications in bootstrap procedure is less than 50, so use ciphertext modulus chain

with size 50 for prmin and prmout. The size of each primes in the ciphertext modulus chain is 242,

this is the smallest magnitude for success at these parameters.

Table 4.6 summarizes parameters of the plaintext modulus and the ciphertext modulus.

pt_mod ct_mod

prm 28 242×50

prmin 28 219

prmout 219 242×50

Table 4.6: Chosen modulus parameters for bootstrap.

In these parameters, our bootstrap procedure takes 18,026 millisecond for one ciphertext, this

is average of 20 experiments including one experiment ending in failure. The bootstrap procedure

needs many homomorphic transformations between the ring and the plaintext slots. We think our

simple transformation, which is just multiplying a matrix to the slot vector, makes our bootstrap

efficient.

Chapter 5

Two Applications of Multilinear Maps:
Group Key Exchange and Witness
Encryption

Constructing multilinear maps have been long-standing open problem, the first construction

based on ideal lattices has been proposed by Garg et al. After this breakthrough, various new

cryptographic systems have been proposed. Garg et al. introduce the concept of level into the

encodings. The system has properties: we can extract a deterministic value from the encodings

at only a specific level and the encodings are not allowed to downgrade to the lower levels. These

properties are useful for cryptography. We study how this graded encoding system be applied to

cryptosystems, and we propose two protocols: group key exchange and witness encryption. In our

group key exchange, we achieve the communication size and the computation costs per party are

both O(1) with respect to the number of parties in the group by piling up the encodings of passed

parties in one encoding. A witness encryption is a new type cryptosystem using NP-complete

problem. The first construction is based on EXACT-COVER problem. We construct it based on

another NP-complete Hamilton Cycle problem and prove its security under the Generic Cyclic

Colored Matrix Model.

73

74

5.1 Introduction

Multilinear maps have been desired to be constructed, because if exists it would enable many

interesting cryptographic applications. Boneh and Silverberg attempted to construct multilinear

maps from abelian varieties, but they concluded that such maps should be hard to construct

[9]. The first construction of multilinear maps has been proposed by Garg, Gentry and Halevi

based on ideal lattices [18]. After this breakthrough, various new cryptographic systems have

been proposed. Multilinear maps has been realized a system called "graded encoding system".

The encodings have homomorphic addition and multiplication functions, and they introduce the

concept of level into the encodings that makes the encoding system interesting. Here we describe

two of its interesting properties. The first property is that, an encoding is probabilistic, that is,

encodings of a same plaintext are different because of included randomness, but at only a specified

level, a deterministic value can be extracted from the random encodings of the same plaintext.

The second property is that, an encoding is unable to downgrade to the lower levels, since the

rerandomized encoding is not allowed to be divided by some other encodings. Cryptography

applications use these properties. For example, in the group key exchange on N parties [18] [13],

each party creates a level-(N−1) encoding from own encoding and others, and they extract a same

value as a sheared group key at the level-(N − 1). In witness encryption [21], an encryptor and a

decryptor generate same level encodings for each by different way and extract same values from the

encodings. The second property brings one-wayness and means a strong tool for cryptosystems.

In the work of attribute based encryption for circuit [20], authors uses this one-wayness to prevent

a back tracking attack and achieved to treat circuits with multi fun-out gates.

Our result. We have studied applications of multilinear maps. In this work we propose

two such applications: Group Key Exchange and Witness Encryption. A one-round group key

exchange protocol is described in the work [18] [13], in which each party collects encodings of

all other parties and multiplies own encoding and theirs one-by-one. We design a GKE protocol,

in the protocol one encoding is communicated on each upflow and downflow. The parties’s secret

are piled up gradually. The number of encodings communicated in a session of the GKE protocol

per party does not depend on the number of parties in the group. Also, its computation cost

per party is independent of the number of parties because each party only multiplies a received

encoding by own encoding.

Witness encryption is a new type of cryptosystem that can be achieved by using multilinear

75

maps [21]. The witness encryption of [21] uses EXACT-COLVER Problem as NP-complete

language. We try to construct based on another NP-complete problem, Hamilton Cycle Problem.

The two problems have in common with a task of collecting just N element with no duplication,

and this situation matches the property of the graded encoding system that extracts a deterministic

value only from the specified level-N encodings. The difference is that, when use Hamilton Cycle

Problem, elements of the cycle are connected by edges and the cycle follows the adjacent edges

sequentially. We take in a tool of adjacent matrices for managing edge adjacency and manages

non-commutativity of vertices in a cycle by matrix’s non-commutativity. We proved the security

of our scheme based on our generic cyclic colored matrix model that is a variant of a generic

colored matrix model defined by the work of indistinguishability obfuscation [19].

5.2 Preliminaries

5.2.1 Approximate Multilinear Maps

Gentry et al. defined their notion of a approximate multilinear maps they call graded encoding

schemes [18]. They view group elements in multilinear map schemes as just a convenient

mechanism of encoding the exponent. Typical applications of bilinear maps use α · gi as an

encoding of a plaintext integer α ∈ Zp, in contrast their setting, they retain the concept of a

somewhat homomorphic encoding and make an algebraic ring R (or field) play the role of the

exponent space Zp.

Definition of Graded Encoding Schemes

Definition 11 (κ-Graded Encoding System [18]). A κ-Graded Encoding System consists of a

ring R and a system of sets S = {S(α)
i ⊂ {0, 1}∗ : i ∈ [0, κ], α ∈ R}, with the following properties:

1. For every fixed index i ∈ [0, κ], the sets {S(α)
i : α ∈ R} are disjoint. The set S(α)

i consists of the

"level-i encodings of α".

2. There is an associative binary operation "+" and a self-inverse unary operation "-" (on {0, 1}∗)
such that for every α1, α2 ∈ R, every index i ≤ κ, and every u1 ∈ S(α1)

i and u2 ∈ S(α2)
i , it holds

that u1 + u2 ∈ S(α1+α2)
i and −u1 ∈ S−α1

i where α1 + α2 and −α1 are addition and negation in R.

3. There is an associative binary operation "×" (on {0, 1}∗) such that for every α1, α2 ∈ R, every

76

i1, i2 with i1 + i2 ≤ κ, and every u1 ∈ S(α1)
i1

and u2 ∈ S(α2)
i2

, it holds that u1 × u2 ∈ S(α1α2)
i1+i2

. Here

α1 · α2 is multiplication in R, and i1 + i2 is integer addition.

The n-graded encoding system of [18] for a ring R includes a system of sets S = {S(α)
i ⊂

{0, 1}∗ : i ∈ [0, n], α ∈ R} such that, for every fixed i ∈ [0, n], the sets {S(α)
i : α ∈ R} are disjoint.

The set S(α)
i consists of the "level-i encodings of α".

Instance Generation. The randomized InstGen(1λ, 1n) takes as inputs the security parameter

λ and integer n. The procedure outputs (params, pzt) where params is a description of an n-graded

encoding system and pzt is a level-n "zero-test parameter".

Ring Sampler. The randomized samp(params) outputs a "level-zero encoding" a ∈ S0. The

induced distribution on α such that a ∈ S(α)
0 is statistically uniform.

Encoding. The enc(params, i, a) takes i ∈ [n] and a level-zero encoding a ∈ S(α)
0 for some

α ∈ R, and outputs a level-i encoding u ∈ S(α)
i of α.

Re-Randomization. The reRand(params, i, u) re-randomizes encoding u to the same level i

encoding, as long as the noise of the initial encoding u is under a given noise bound.

Addition and negation. Given params and two encodings at the same level, u1 ∈ S(α1)
i

and u2 ∈ S(α2)
i , it holds add(params, u1, u2) ∈ S(α1+α2)

i , and neg(params, u1) ∈ S(−α1)
i , subject to

bounds on the noise.

Multiplication. For u1 ∈ S(α1)
i1

,u2 ∈ S(α2)
i2

, such that i1+ i2 ≤ n, we have mult(params, u1, u2) ∈
S(α1α2)

i1+i2
.

Zero-test. The procedure isZero(params, pzt, u) outputs 1 if u ∈ S(0)
n and 0 otherwise. Note

that in conjunction with the procedure for subtracting encodings, this gives us an equality test.

Extraction. This procedure extracts a "canonical" and "random" representation of ring el-

ements from their level-n encoding. Namely ext(params, pzt, u) outputs (say) K ∈ {0, 1}λ, such

that:

(a) With overwhelming probability over the choice of α ∈ R, for any two u1, u2 ∈ S(α)
n ,

ext(params, pzt, u1) = ext(params, pzt, u2),
(b) The distribution {ext(params, pzt, u) : α ∈ R, u ∈ S(α)

n } is statistically uniform over {0, 1}λ.

Graded Decisional Diffie-Hellman Problem

Garg et al. [18] and Coron et al. [13] define Graded DDH Problem (GDDHProblem), as following

process.

77

1. (params, pzt)← InstGen(1λ, 1κ)
2. Choose aj ← samp(params) for all 1 ≤ j ≤ κ + 1

3. Set uj ← reRand(params, 1, enc(params, 1, aj)) for all 1 ≤ j ≤ κ + 1

4. Choose b← samp(params)
5. Set ũ = aκ+1 × Πκi=1ui

6. Set û = b × Πκi=1ui

The GDDH distinguisher is given as input the κ + 1 level-one encodings uj and either ũ

(encoding the right product) or û (encoding a random product), and must decide which is the

case.

Graded Decisional Diffie-Hellman Assumption (GDDH Assumption) The Graded Decisional

Diffie-Hellman Assumption is that the advantage of any efficient adversary is negligible in the

security parameter against Graded Decisional Diffie-Hellman Problem.

5.3 Group Key Exchange using Multilinear Maps

The graded encoding system has a function that extracts a deterministic value associated with

a plaintext from specified level encodings of the plaintext, the specified level is specified at

the instance generation. This functionality fits with a group key exchange (GKE), because the

shared key should be generated from secrets of all parties. We construct a GKE protocol its

communication type is (N-1)-round 2-way of upflow and downflow. The construction is simple,

each party multiplies a received encoding by own encoding and sends the result encoding to

the next party. Since in the communicated encoding secrets of passed parties are piled up, the

message complexity per party does not depend on the number of parties. The computation cost

for each party is also O(1).

In Table 5.1, we compare our GKE scheme with two other schemes in terms of their per-

formance with respect to the number of parties, ’N’ means the number of parties, ’Comm.’ is

communication size and ’Comp.’ is computation cost. The first scheme is one-round GKE using

Multilinear Maps in [18]. In this scheme, communicated encodings are not product, the number

78

Table 5.1: Comparison of performance with respect to the number of parties (per party)
Scheme Comm. Comp.

One-round using MM [18] O(N) O(N)
upflow/downflow no MM [46] O(N) O(N)

upflow/downflow using MM (ours) O(1) O(1)

of encodings per party is O(N) and the cost one party multiplies received encodings is O(N).
The second scheme [46] is upflow/downflow type like ours, but it does not use Multilinear Maps.

The number of communicated group elements per party is O(N) and the computation cost per

party is also O(N).
In our protocol, we design the shared group key as output value of pseudo-random function

which seed is a level-(N − 1) encoding generated by above process and which input value is a

session ID. We use graded encoding system for the session ID to achieve theoretically that the

computational cost and communication size per party are O(1). For this reason, we make two

instances of graded encoding system for level-(N − 1) and level-N .

We prove our protocol under GDDH assumption using security model proposed by Bresson

et al [8].

5.3.1 BCPQ Model : Security Model for GKE

BCPQ Model is a formal model for Group Key Exchange protocol (GKE) proposed by Bresson,

Chevassut, Pointcheval, and Quisquater [8]. In their model, the adversary A controls all commu-

nication between player instances and asks an instance to release session key or long-lived key.

A set ID of n players in protocols P is fixed. A player Ui ∈ ID can have many instances called

oracles, involved in distinct concurrent execution of P. An instance s of player Ui is denoted as

oracle Πs
i .

SessionIDS. Session id for oracle Πs
i is defined as SIDS(Πs

i) = {SIDSi j : j ∈ ID} where

SIDSi j is the concatenation of all flows thatΠs
i exchanges withΠt

j in an execution of P. Adversary

A listens on the wire and can constructs SIDS.

Oracle Queries. Adversaries can send following queries to oracles:

·Send(Πs
U,m):Adversary A gets the response which Πs

U have generated in processing incoming-

message m.

79

·Reveal(Πs
U):This query forces Πs

U to release its session key.

·Corrupt(U):Adversary A gets long-lived key LLU of U but does not get the internal data of

instance of U.

·Test(Πs
U):A gets back session key or random string from Πs

U .

Definition 12 (Correctness) A GKE protocol is correct if for any operation execution between

the oracles Πs
U1
, · · · ,Πs

UN
with the same session ids sid = SIDS(Πs

i) all oracles accept with the

same session group key.

Definition 13 (AKE Security) Protocol P is called AKE-secure if advantage of any efficient A
in the following game GameAKE (A) is negligible.

GameAKE : Adversary A can ask queries except Test many times, and once, A sends a Test-query

to a fresh oracle (a oracle is fresh if nobody has been asked for Corrupt-query at that moment,

and no Reveal-query is asked to the oracle or its partners). A gets back its session key or a

random string. The adversary wins if she correctly guesses the bit b used in the above game, and

the advantage is probability of win minus 1/2, taken over all bit tosses.

5.3.2 Our Construction

Our scheme consists of PPT algorithms Setup, Upflow, Downflow and KeyGen, and parties are

indexed Party1 to PartyN , and Partyi is connected to Partyi+1 (1 ≤ i ≤ N −1). This GKE protocol

first executes the Setup algorithm and the resulting public information should be shared among

parties. Party1 executes Upflow1 without input value. Then, Partyi executes Upflowi, receiving

the outputs (cur, dur,σur) of its precedent Upflowi−1 as inputs, sequentially for i = 2 to N . Then,

PartyN executes DownflowN without input value and Partyi executes Downflowi, receiving the

outputs (cdr, ddr,σdr) of the precedent Downflowi+1 as inputs, also sequentially for i = (N − 1)
to 1. In the Downflow sequence, each Downflowi invokes the algorithm Keygen to compute the

shared session-key ξ among the parties.

Building blocks are multilinear maps MM, EUF-CMA secure signature scheme Σ and pseudo

random function Hseed . In the following algorithm, a· b denotes mult(params, a, b).

80

Setup. The algorithm Setup takes security parameter λ and number of parties N as input,

makes two sets of MM parameter by instance generation specifying level N−1 and N , respectively.

Then it generates N pairs of signing key ski and verification key vki by key generation of Σ, and

sets signing keys to each party. The algorithm outputs two sets of parameter of MM and all

verification keys {vki} as public parameter.

Setup(1λ, 1N)
(params1, pzt1)← MM.InstGen(1λ, 1N−1)
(params2, pzt2)← MM.InstGen(1λ, 1N)
for i = 1 to N

(vki, ski)← Σ.KeyGen(1λ)
Sets ski to Ui

return (params1, pzt1, params2, pzt2, vki(1 ≤ i ≤ N))

Upflow. The algorithm Upflow takes encoding cur, dur and signature σur as input and verifies

them on sender’s verification key vki−1. Then it creates a secret level-0 encoding ai and upgrades

to level-1 and rerandomizes that using param1. The algorithm creates one more level-1 encoding

d1 for sessionID using param2. Then, multiplies them by received encoding and outputs the two

encodings with its signature σus.

Upflowi(cur, dur,σur)
if i " 1 and Σ.verify(vki−1, cur ∥dur,σur)=false then abort

ai ← MM.samp(params1)
ci ← MM.reRand(params1, 1,MM.enc(params1, 1, ai))
di ← MM.reRand(params2, 1,MM.enc(params2, 1,MM.samp(params2)))
if i " N then

if i = 1 then cus := ci, dus := di

else cus := cur · ci, dus := dur · di

σus ← Σ.sign(ski, cus∥dus)
return (cus, dus,σus)

81

Downflow. The algorithm Downflow takes encodings cdr ,ddr and signature σdr as input and

verifies them on sender’s verification key vki+1. Then it generates a session key ξ by key

generation algorithm, and multiplies own two encoding ci and di by received encoding cdr and

ddr respectively, and outputs the result encodings with its signature σds.

Downflowi(cdr, ddr,σdr)
if i " N and Σ.verify(vki+1, cdr ∥ddr,σdr)=false then abort

if i " 1 then

if i = N then cds := ci, dds := di

else cds := cdr · ci, dds := ddr · di

σds ← Σ.Sign(ski, cds∥dds)
ξ ← KeyGen(ai, cur, cdr, di, dur, ddr)
return (cds, dds,σds) as message and ξ as local output.

KeyGen. The algorithm KeyGen takes encodings ai, cur, cdr, di, dur, ddr as input, multiplies

ai, cur, cdr for seed of H and di, dur, ddr for sessionID. MM.ext extracts a deterministic value from

level-(N − 1) encoding c′i , and KeyGen algorithm sets it to seed of H. A deterministic value from

level-N encoding d′i is sessionID and input to H.

KeyGeni(ai, cur, cdr, di, dur, ddr)
c′i := ai · cur · cdr

d′i := di · dur · ddr

δ← MM.ext(params1, pzt1, c′i)
sessionID← MM.ext(params2, pzt2, d′i)
return ξ ← Hδ(sessionID)

Correctness. We show all parties share a same session key string. Considering output string

from H in KeyGen algorithm, seed δ of H is the product of own private level-0 encoding and

level-1 encodings of all other parties. MM.ext outputs the same string that is a deterministic

value of product of plaintexts ai of all parties. SessionID is product of level-1 encodings di of all

parties, thus MM.ext outputs the same value for each party.

82

5.3.3 Proof of Security

Theorem 4 Our protocol is AKE secure under the GDDH Assumption (see Section A.2), and the

assumptions that the signature scheme Σ is EUF-CMA and the function H is secure PSF.

Proof. We prove the security of our protocol based on BCPQ security model.

Game0: Original Security game for our protocol
–Send(null,”start”)

Follow the instruction of the Setup algorithm to compute and return (params1, pzt1, params2, pzt2, vki(1 ≤
i ≤ N)).

–Send(Πs
i , Upflow(cur, dur ,σur))

Follow the instruction of the Upflowi algorithm to compute and return (cus, dus,σus).

–Send(Πs
i , Downflow(cdr, ddr ,σdr))

Follow the instruction of the Downflowi algorithm to compute and return (cds, dds,σds) and local

output ξ.

–Reveal(Πs
i): return ξ

–Corrupt(Ui): return ski

–Test(Πs
i)

b
$← {0, 1}

if b = 0 then return ξ else return r
$← {0, 1}λ

Then adversary A outputs guess of b as b̂ .

We define Si to be the event that b = b̂ in Gamei.

Game1: We make a transition into Game1: Abort if message is fabricated.

–Send(Πs
i , Upflow(cur, dur ,σ))

83

if cur ∥dur # m′ and Σ.verify(vki−1, cur ∥dur,σur)=true

then abort

if i " 1 and Σ.verify(vki−1, cur ∥dur,σur)=false then abort

m′ := m′∥cur ∥dur

// following is same as Game0

–Send(Πs
i , Downflow(cdr, ddr ,σ))

if cdr ∥ddr # m′ and Σ.verify(vki+1, cdr ∥ddr,σdr)=true

then abort

if i " N and Σ.verify(vki+1, cdr ∥ddr,σdr)=false then abort

m′ := m′∥cdr ∥ddr

// following is same as Game0

Claim 1 If the signature scheme Σ is EUF-CMA secure, then | Pr[S0] − Pr[S1] |≤ negl(λ).

Sketch of Proof. Let c and d be received encodings, m′ be a set of messages that had been

verified, vk be a verification key and σ be a signature. We define failure event F that "(c, d) # m′

and Σ.verify(vk, c∥d,σ) = true". Then, S0 ∧ ¬F ⇔ S1 ∧ ¬F. Let A be an adversary that can get

an advantage in distinguishing between Game0 and Game1. We construct a forger F from A.

Forger F . F guesses a party j whose signature A will forge. In Setup algorithm, F sets

input vk to vk j of party j. A sends Send-query to Πs
i , if i=j and event F then F outputs the

((c, d),σ). F calls signing oracle to get signature of j.

The probability of F successes in above game is 1/N · Pr[F] and signature scheme Σ is

EUF-CMA, thus Pr[F] ≤ negl(λ). From Difference Lemma defined by Shoup in Sequence of

Games [44], |Pr[S0]−Pr[S1] |≤Pr[F].
∴ |Pr[S0]−Pr[S1] |≤ negl(λ). ✷

Game2: We make a transition into Game2. In this game, seed of H is changed into random

encoding which is formed by GDDH Problem instance.

–Test(Πs
i)

b
$← {0, 1}

84

if b = 0 then

a′ ← MM.samp(params1)
c′i := a′ · cur · cdr

d′i := di · dur · ddr

δ← MM.ext(params1, pzt1, c′i)
sessionID← MM.ext(params2, pzt2, d′i)
ξ ← Hδ(sessionID)
return ξ

else return r
$← {0, 1}λ

Claim 2 Under GDDH the assumption, | Pr[S1] − Pr[S2] |≤ negl(λ).

Proof. We construct a distinguisher D of GDDH Problem from adversary A against our

protocol. D guesses a party whom A will ask Test-query. Its instance and partner instances are

denoted by Πs∗
i . We define a event Guess that is "All Πs∗

i are correct". If input of D is ũ then the

view of A in D is view of A in Game1, and if input of D is û then that is view of A in Game2.

Algorithm D(uj(1 ≤ j ≤ N),T = ũ or û)

s∗i
$←[1,S] //S is upper bound of numbers of instances A creates.

–Send(Πs
i , Upflow(cur, dur,σ))

if s = s∗i then

if cur ∥dur # m′ and Σ.verify(vki−1, cur ∥dur,σur)=true then abort

if i " 1 and Σ.verify(vki−1, cur ∥dur,σur)=false then abort

m′ := m′∥cur ∥dur

ci ← ui

di ← MM.reRand(params2, 1,MM.enc(params2, 1,MM.samp(params2)))
if i " N then

if i = 1 then cus := ci, dus := di

else cus := cur · ci, dus := dur · di

σus ← Σ.Sign(ski, cus∥dus)
return (cus, dus,σus)

else // s " s∗i , following is same as Game1

85

–Send(Πs
i , Downflow(cdr, ddr,σ))

if s = s∗i then

if cdr ∥ddr # m′ and Σ.verify(vki+1, cdr ∥ddr,σdr)=true then abort

if i " N and Σ.verify(vki+1, cdr ∥ddr,σdr)=false then abort

m′ := m′∥cdr ∥ddr

if i " 1 then

if i = N then cds := ci, dds := di

else cds := cdr · ci, dds := ddr · di

σds ← Σ.Sign(ski, cds∥dds)
// MM.KeyGen is not called.

return (cds,σds)
else // s " s∗i , following is same as Game2

–Reveal(Πs
i)

if s = s∗i then abort with a random bit

return ξ

–Corrupt(Ui): return ski

–Test(Πs
i)

if s " s∗i then abort with a random bit

b
$← {0, 1}

if b = 0 then

d′i := di · dur · ddr

δ← MM.ext(params1, pzt1,T)
sessionID← MM.ext(params2, pzt2, d′i)
return ξ ← Hδ(sessionID)

else return r
$← {0, 1}λ

The advantage of D is AdvD = | Pr[D(uj,T)=1 | T = ũ] - Pr[D(uj,T)=1| T = û] |. Now we

describe Pr[D(uj,T)=1 | T = ũ] as Pr[D(ũ)=1], Pr[D(uj,T)=1| T = û] as Pr[D(û)=1].

86

Pr[D(ũ)=1] = Pr[D(ũ)=1 ∧ ¬ Guess] + Pr[D(ũ)=1 ∧ Guess]

=1/2 + Pr[Guess]Pr[D(ũ)=1 | Guess]

=1/2 + Pr[Guess]Pr[S1]

Pr[D(û)=1] = Pr[D(û)=1 ∧ ¬ Guess] + Pr[D(û)=1 ∧ Guess]

=1/2 + Pr[Guess]Pr[D(û)=1 | Guess]

=1/2 + Pr[Guess]Pr[S2]

AdvD = | Pr[D(ũ)=1] - Pr[D(û)=1] | = Pr[Guess]·(Pr[S1]-Pr[S2])

From GDDH assumption AdvD ≤ negl(λ), and Pr[Guess] is 1/poly(λ). Therefore |Pr[S1]-Pr[S2]|
≤ negl(λ). ✷

Game3: We make a transition into Game3. In this game, the value of H is changed into a

random string.

–Test(Πs
i)

b
$← {0, 1}

if b = 0 then return r′
$← {0, 1}λ

else return r
$← {0, 1}λ

Claim 3 If H is secure then | Pr[S2] − Pr[S3] |≤ negl(λ).

Proof. Immediate from security of pseudo-random function. ✷

The advantage of A is clearly negligible in Game3 and from Claim1, Claim2, Claim3, the

advantage of A of real is also negligible. ✷

87

5.4 Witness Encryption using Multilinear Maps

5.4.1 Preliminaries

Witness Encryption

A witness encryption scheme [21] for an NP language L(with corresponding witness relation R)

consists of the following two polynomial-time algorithms:

Encryption. The algorithm Encrypt(1λ, x,m) takes as input a security parameter λ, an

unbounded-length string x, and a message m ∈M , and outputs a ciphertext CT .

Decryption. The algorithm Decrypt(CT, w) takes as input a ciphertext CT and an unbounded-

length string w, and outputs a message m or the symbol ⊥.

· Correctness. For any security parameter λ, for any m and for any x ∈ L s.t. R(x, w) holds, we

have that Pr[Decrypt(Encrypt(1λ, x,m), w) = m] = 1 − negl(λ).
· Soundness Security. For any x # L, for any PPT adversary A and messages m0,m1 ∈M,

| Pr[A(Encrypt(1λ, x,m0)) = 1] - Pr[A(Encrypt(1λ, x,m1)) = 1] |≤ negl(λ).

The Security-Correctness Gap. Correctness requires that an algorithm can decrypt if x ∈ L

and it knows w s.t. R(x, w). Soundness Security requires that if x # L then no PPT algorithm can

decrypt. This security does not define on the case when x ∈ L. But since distinguishing x ∈ L

and x # L is NP-complete, decryption would be difficult even if x ∈ L.

Definition of Graph and Hamilton Cycle Problem

A graph G = (V, E) is a pair of a set of vertices V and a set of edges E associated with pairs of

vertices, both being assumed finite. Let V(G) = {v1, v2, · · · , vn}, E(G) = {e1, e2, · · · , em}, |V | =
n, |E | = m. We will describe an edge between vertex vi and vertex v j as ei, j . A walk of length

k from v0 to vk is P = (V, E) with V = {v0, v1, · · · , vk}, E = {e0,1, · · · , ek−1,k}. A path is a walk

with all different vertices. A cycle is a path which start vertex is equal to the goal vertex. A cycle

that visits all vertices of V is called a Hamilton Cycle (HC). A directed graph is a graph where

each edge has a direction, in such graph, ei→ j denotes an edge from vertex vi to vertex v j . An

undirected graph is one where every edge has both ei→ j and ej→i. A simple graph is one which

has no self-loop or multiple edges.

88

The Hamilton Cycle Problem (HCP) is that, given a graph G = (V, E), decide whether G has

a HC or not. A graph with a HC is called Hamiltonian Graph. HCP is NP-complete both for

directed graphs and undirected graphs.

Generic Colored Matrix Model

Garg et al. defined a generic colored matrix model in [19] that captures attacks where the

adversary is only allowed to add/multiply matrices in the correct order. They represent this

restriction as color assigned to left and right of matrix and handle. For every matrix M , the

corresponding record is (h,M, (m, LC), (n, RC)) where h is handle, M is m × n matrix, LC is left

color, and RC is right color.

Setup. The represent oracle choose an initial set of l colored matrices and assigns to

them the handle, inserts into the database the record {(hi,Mi, (mi, LCi), (ni, RCi))}l
i=1, and sends

{(hi, (mi, LCi), (ni, RCi))}l
i=1 to the adversary but not the matrix M .

The adversary sends queries through two handles. A represent oracle, who performs generic

computation to the adversary, looks up records corresponding the two handles in the database and

if their color and row/column size satisfy the order restriction of addition or multiplication then

the oracle adds or multiplies the two matrices. If the result record is not in the database then the

oracle inserts the record with new handle h′ into database. Then the oracle returns a contained

or new handle. The adversary being unable to get matrix, he can only add and multiply through

given handles. The following is the process of representation oracle.

Addition. When the adversary makes query add(h1, h2), the oracle looks up the records

corresponding to h1, h2 in the database. If such records exist, then if (m1, LC1) = (m2, LC2) and

(n1, RC1) = (n2, RC2) then the oracle computes their sum M = M1 + M2. If the database already

contains the matrix (M, (m1, LC1), (n1, RC1)) then oracle returns its handle. Otherwise, the oracle

assigns a new handle h′ and inserts into the database (h′,M, (m1, LC1), (n1, RC1)) and returns the

new handle.

Multiplication. When the adversary makes query mult(h1, h2), the oracle looks up the records

corresponding to h1, h2 in the database. If such records exist, then if (n1, RC1) = (m2, LC2) then

the oracle computes their product M = M1M2. If the database already contains the matrix

(M, (m1, LC1), (n2, RC2)) then oracle returns its handle. Otherwise, the oracle assigns a new

handle h′ and inserts into the database (h′,M, (m1, LC1), (n2, RC2)) and returns the new handle.

89

5.4.2 Design Principle

We use a directed hamiltonian graph to construct our witness encryption. First, we consider

design of blinding factor which hides plain text. HC passes every vertex in a graph exactly once,

for this, we assign a secret to every vertex and set some value storing the secret to every edge. We

generate a blinding factor from these secrets of all vertices and hide a message by the blinding

factor and make it a ciphertext. Other components of ciphertext are edge secrets. One who

knows a HC can collect all secrets from ciphertext using the knowledge of HC and he can recover

the blinding factor. Difficulty of designing such blinding factor is that, during decrypt one who

knows HC can generate the blinding factor and during encrypt the encryptor creates the same

value without knowledge of HC.

We adopt to use high-dimensional matrix for achieving this restriction of ordering on decryp-

tion because of matrix holds non-commutative. We assign an adjacency matrix to each edge,

in which we set a secret of starting vertex, and put these adjacency matrices of all edges in the

ciphertext. A decryptor who knows the HC can multiply all adjacency matrices in the order of

the given HC and can make a product of the secrets of all vertices in the graph. The product value

has no order, therefore, the encryptor also can make the same value.

Detail of the design. We name vertices by its index like 1, 2, · · · , n and let Pi→ j be a matrix

assigned to an edge ei→ j . We set a secret si of vertex i to the (i, j)-th element in Pi→ j . An element

of (i, j) in a product matrix of two adjacent matrices Pi and Pj is a product sisj . By multiplying

matrices of edge in order of the given HC which starts and goals at vertex i, the element of (i, i)
in the product matrix is Π j∈[n]sj . This value is independent of the order of vertices, therefore

encryptor also can make this value from secrets assigning to vertices.

To prevent pulling out a secret si in the edge matrix Pi→ j , it is necessary to randomize edge

matrices. For this, we take in a technique of oblivious transfer proposed by Joe Kilian [31].

We assign a randomized matrix Ri and its inverse R−1
i to each vertex and set R−1

i Pi→ j Rj be

a new edge matrix. When multiply these new matrices of adjacency edge, e.g. R−1
i Pi→ j Rj

and R−1
j Pj→k Rk , the product Rj R−1

j becomes identity matrix, thus the connected edge matrices

becomes R−1
i Pi→ j Pj→k Rk . This works sequentially, a product matrix of connected edge matrices

in a path that starts vertex i and goals vertex x becomes R−1
i Pi→ j · · · P(x−1)→x Rx . If i " x then,

the secret Πx−1
k=i sk in the matrix Πx−1

k=i Pk is randomized, therefore it is impossible to pull out the

secret. The other hand, if i = x then, the product is R−1
i Pi→ j · · · Py→i Ri and it is possible to pull

90

out a trace Πyk=i sk of this product. This means that this construction has a problem that one who

does not know HC can make blinding factor Π j∈[n]sj from traces of partial cycles. We call partial

cycle as "short cycle".

Definition 14 (Short Cycle) We call a cycle "short cycle" if the cycle satisfies:

1. The cycle does not pass all vertices in a graph.

2. Each vertex in the cycle is passed only once.

In other words, "short cycle" is a cycle except HC.

We assign one more secret ri to each vertex i and set that to the (1, 1)-th element of every edge

matrix Pi→ j . A (1, 1)-th element of a product matrix of edge matrices in a cycle that starts and

goals vertex 1 becomes Πri + Πsi. We regard HC as a cycle that starts and goals vertex 1, and

then a element (1, 1) in product of edge matrices in HC becomes Π j∈[n]rj + Π j∈[n]sj . This value

is unable to be calculated from traces, that are Πr +Πs from a short cycle not including vertex 1.

For the purpose of security proof, we assign another matrix R′1 instead of R−1
1 s.t. R′1R1 "

identity matrix. In a product of in-edge matrix and out-edge matrix about vertex 1, R−1
1 R′1 is

not canceled, therefore it prevents pulling out a trace. The blinding factor is now changed to

R′1(Π j∈[n]rj + Π j∈[n]sj)R1.

Every values assigned to vertex (i.e., secrets si, ri and all elements of random matrices Ri, R−1
i

and R′1) are encoded at level-0 by sampling algorithm of multilinear maps. During making edge

matrix in encrypt algorithm, all components in edge matrix R−1
i Pi→ j Rj are encoded to level-1

and rerandomized, the rerandomized encoding keeps additive and multiplicative homomorphism

but does not keep homomorphism divisionally. We set up this encoding system with level-n.

Using this zero-test parameter, we can extract a deterministic string from level-n encoding of

each element in R′1(Π j∈[n]rj + Π j∈[n]sj)R1. We concatenate these extracted values and extract

a random value of this concatenation by a strong randomness extractor. The extracted value is

finally our blinding factor.

5.4.3 Our Construction

In our scheme of witness encryption, a NP-complete language is Hamilton Cycle Problem, and

a statement is a graph G. As building blocks, we use a multilinear map MM and a randomness

extractor ext. Notations: The symbol | | denotes to concatenate strings. We omit "params" for

91

simplicity in the following algorithms.

Concrete Construction

Encryption. Encryption algorithm takes as input security parameter λ, a graph G of n vertices as

statement of language, and a message m. First, it generates parameters of M M specifying level-n.

Next, creates a level-0 encoded random matrix Ri and samples two level-0 encodings ri and si for

every vertices i in G. Then it creates matrix Pi→ j for edge ei→ j and set ri and si to the matrix. A

public matrix Êi→ j is product of R−1
i , Pi→ j and Ri, whose elements are encoded level-1. Last, it

creates blinding factor from all si and ri and hides a message m.

Encrypt(1λ,G,m)→ CT

(params, pzt)← MM.InstGen(1λ, 1n)
for i ∈[n] // all vertices

Ri ← sampMatrix(n)
if i = 1 then R′1 ← sampMatrix(n)
else create a invert matrix R−1

i from Ri

ri ← samp() , si ← samp()
for i ∈[n]

for j s.t. edges i → j are out-edges of vertex i in G

create a n × n matrix Pi→ j

(Pi→ j)1,1 := ri, (Pi→ j)i, j := si

(Pi→ j)x,y := 0 if (x, y) " (1, 1) and (i, j)
if i = 1 then Ei→ j := R′1P1→ j Rj // level-0

else Ei→ j := R−1
i Pi→ j Rj // level-0

Êi→ j ← encodeMatrix(1, Ei→ j) // level-1

Create an n × n matrix P′

(P′)1,1 := Πi∈[n]ri + Πi∈[n]si

(P′)x,y := 0 if (x, y) " (1, 1)
for i, j ∈ [n]

u := u| |MM.ext(pzt,MM.enc(n, (R′1P′R1)i, j))
C := m ⊕ ext(u)
return CT = (C, {Êi→ j}(i, j)∈E(G),G)

92

sampMatrix(n)→ M

create a n × n matrix M

for i, j ∈ [n]
Mi, j ← MM.samp() // level-0

return M

encodeMatrix(k,M)→ M

for i, j ∈ [n]
Mi, j ← MM.reRand(k,MM.enc(k,Mi, j)) //level-k

return M

Decryption. Decryption algorithm takes as input a ciphertext CT and a hamilton cycle HC as

witness. We can suppose the first vertex of HC is vertex 1. The algorithm chooses edge matrix

in CT in the order of HC and multiplies them. Then it extracts a deterministic string for every

element in the product by MM.ext and it concatenates all of the strings. Here j = HC(i) denotes

a next vertex to i in HC {· · · , i, j, · · · } .

Decrypt(CT,HC)
M := Ê1→HC(1)ÊHC(1)→HC2(1) · · · ÊHCn−1(1)→1

for i, j ∈ [n]
u := u| |MM.ext(pzt,MM.enc(n,Mi, j))

return m := C ⊕ ext(u)

Correctness

Now we show a blinding factor u recovered in the decryption algorithm is the same as u in

the encryption algorithm. First, we evaluate M in the decryption. Every element in M is

rerandomized encoding and we can homomorphically add and multiply them. Therefore, M is

equivalent to level-n encoding of the following product.

(R′1P1→2R2)(R−1
2 P2→3R3) · · · (R−1

(n−1)P(n−1)→1R1) = R′1P1→2P2→3 · · · P(n−1)→1R1

Let P′′ be P1→2P2→3 · · · P(n−1)→1 , then P′′1,1 = Πi∈[n]ri+Πi∈[n]si and P′′x,y = 0 for (x, y) " (1, 1).

93

Thus P′′ is equal to P′ calculated in the encryption algorithm. For each element in P′ and P′′,

their output values by MM.ext are the same. Therefore, the blinding factor made by the encryption

algorithm and the decryption algorithm are the same.

5.4.4 Proof of Security: Soundness Security

First, we define a variant of generic colored matrix model: a generic cyclic colored matrix model,

and then define a security game based on the model.

Generic Cyclic Colored Matrix Model

We define a generic cyclic colored matrix model by expanding a generic colored matrix model

defined by Garg et al. in [19] that captures attacks where the adversary only adds and multiplies

matrices in the correct order.

A matrix in our ciphertext is sandwiched in between two random matrices, when multiply

adjacent edge matrices, such random matrices are canceled. But when multiply not-adjacent edge

matrices, they are not canceled and randomization remains. The generic colored matrix model

[19] modeled this situation as colored matrix: an adversary multiplies matrices only if he queries

two matrices such that RC1 is the same as LC2. Since our ciphertexts are encoded, we can add

and multiply elements in matrices homomorphically but we cannot divide one by another. In the

generic colored matrix model [19], an adversary queries add and mult using handle, therefore,

we use this models for our encoding restriction.

If the LC and RC of a result matrix M are same then a trace of matrix M is possible to be

pulled out. In the oracle’s process in our model, when such case, the oracle computes a trace of

the result matrix M , and returns a record additionally for the trace. In our model, there are two

record types: "Matrix Type" and "Scalar Type". We add a query scalar_mult that multiplies a

trace value in a "Scalar Type" record by a matrix in a "Matrix Type" record.

We do not return a handle of a eigenvalue of a matrix, because computing the eigenvalue

needs division during Gaussian elimination, but the division is not provided on the encoding

system used in our scheme.

Detail of The Generic Cyclic Colored Matrix Model
Setup and Addition algorithms are the same as the original generic colored matrix model. In

Multiplication algorithm, the following process is executed after Multiplication process of the

94

original model. If the types of record corresponding h1 and h2 are both matrix type and LC1 and

RC2 of result matrix are the same then the oracle computes a trace M′ of the result matrix. If the

trace is in the database then returns its handle, otherwise inserts into the database the new record

with new handle (h′′,M′, (1, 0), (1, 0)) and returns its handle.

Scalar Multiplication. When the adversary makes query scalar_mult(h1, h2), the oracle looks

up the records corresponding to h1, h2 in the database. If such records exist, we view the first

record as matrix type and the second record as scalar type, then the oracle computes product

M =trace×M1. If the database already contains the matrix (M, (m, LC), (n, RC)) then oracle

returns its handle. Otherwise, the oracle assigns a new handle h′ and inserts into the database

(h′,M, (m1, LC1), (n1, RC1)) and returns the new handle.

Definition of Security Game for Witness Encryption using Multilinear Maps

We define a security game based on the generic cyclic colored matrix model for our witness

encryption using multilinear maps. In our witness encryption, a matrix assigned to each edge

corresponds to one record in the generic cyclic colored matrix model. To multiply two colored

matrices(h1,M1, (m1, LC1), (n1, RC1)) and (h2,M2, (m2, LC2), (n2, RC2)) by mult(h1, h2) means to

make a path by connecting two edges, and if LC1 = RC2, it means that the start vertex and the

goal vertex are the same, in other words, a path becomes a cycle in our scheme. Therefore, in

the security game, the representation oracle returns a handle of trace if the result of mult(h1, h2)
becomes a cycle. Exceptionally, a random matrix R′1, which is not a inverse of R1, is assigned

to out-edges of vertex 1, therefore, the left and right colors are different and the oracle does not

return a handle of trace in this case.

Details of the Security Game for our Witness Encryption.
Setup. The oracle is given a graph G, it makes matrix type records for all edges in G and inserts

into database them and returns their representations {(h, (m, LC), (n, RC))} without giving matrix

M itself to the adversary. To say more details, the oracle samples two level-0 encoded secrets

ri and si by MM.samp() for each vertex i. For every edge ei→ j , it sets the secrets to a adjacent

matrix Mi→ j where (Mi→ j)1,1 = ri and (Mi→ j)i, j = si, and inserts into the database those records

{(h,Mi→ j, (n, i), (n, j))}. Then it gives {(h, (n, i), (n, j))} to the adversary.

Addition. When the adversary makes query add(h1, h2), the oracle looks up the records

corresponding to h1, h2 in the database. If such records exist then, if (m1 " m2) or (LC1 " LC2)

95

or (n1 " n2) or (RC1 " RC2) then return bot. Otherwise, it adds M = M1 + M2 and looks up

the record (M, (m, LC), (n, RC)), if it exists in the database then returns the handle, otherwise the

oracle inserts the record (h,M, (m, LC), (n, RC)) with new handle h and returns the handle.

Multiplication. When the adversary makes query mult(h1, h2), the oracle looks up the records

corresponding to h1, h2 in the database. If such records exist, if n1 " m2 or RC1 " LC2 then

return bot. Otherwise, it multiplies M = M1M2 and looks up the record (M, (m1, LC1), (n2, RC2)),
if it exists in the database then returns the handle, otherwise the oracle inserts the record

(h,M, (m1, LC1), (n2, RC2)) with new handle h and returns the handle. If the matrices corre-

sponding to h1, h2 are both matrix type and they starts and goals at same vertex such that the

vertex is not 1 then the oracle computes a trace of M and puts the trace to 1 × 1 matrix M and

inserts into the scalar type record (h,M, (1, 0), (1, 0)) and returns its handle to the adversary.

Scalar Multiplication. When the adversary makes query scalar_mult(h1, h2), the oracle looks

up the records corresponding to h1, h2 in the database. If such records exist, let first record to

be matrix type, second record to be scalar type, then the oracle multiplies M = (M2)1,1M1 and

looks up the record (M, (m1, LC1), (n1, RC1)), if it exists in the database then returns the handle,

otherwise the oracle inserts the record (h,M, (m1, LC1), (n1, RC1)) with new handle h and returns

the handle.

Proof of Security

Theorem 5 Our witness encryption based on HC is soundness secure in the generic cyclic

colored matrix model.

More precisely, the probability that an adversary distinguishes a real model and a simulation is

bounded above T3/p from the Schwartz-Zippel lemma [42] [50] where an adversary receives at

most T handles from the oracle and the secrets r, s are independently and uniformly chosen from

Zp. T3 means a number of handles × a number of combinations of r, s.

Proof. We make simulator which input is a graph which does not have any HC, and show that

there is no handle of the matrix corresponding to the "full cycle":Π j∈[n]rj + Π j∈[n]sj in a view of

the adversary.

Algorithm of Simulator. We assume there are t short cycles which does include vertex 1 in

a given graph G. Let sc be a set of vertices of a short cycle. Input values to a simulator is a graph

96

G. When simulator needs to return a handle of trace, it calculates a trace from the result matrix,

then returns the result’s handle.

Notations:

A given graph G has n vertices. A record reci denotes the record (hi,Mi, (mi, LCi), (ni, RCi)) in

the database.

Setup. A simulator makes edge matrices for all edges in given graph G, and inserts into

the database those edge matrices and sends representations of edge without matrix M to the

adversary.

for i ∈[n] // all vertices

create a variable Ri Si

for j s.t. edges i → j are out-edges of vertex i

create a n × n matrix Mi→ j

(Mi→ j)1,1 := Ri (Mi→ j)i, j := Si

(Mi→ j)x,y := 0 if (x, y) " (1, 1) and (i, j)
hk := new handle

db.insert(hk,Mi→ j, (n, i), (n, j))
give {(hk, (n, i), (n, j))} to the adversary.

Addition. If types of associated h1, h2 are both matrix type, if their start vertices are same

and their goal vertices are also same then the simulator adds two matrices and inserts its record

into database and returns the handle.

add(h1, h2)
rec1 = db.select(h1) rec2 = db.select(h2)
if (m1 " m2) or (LC1 " LC2) or (n1 " n2) or (RC1 " RC2) then return ⊥
M = M1 + M2

h← db.select(M, (m1, LC1), (n1, RC1))
if h does not exist in database then

h := new handle

db.insert(h,M, (m1, LC1), (n1, RC1))

97

return h

Multiplication. If types of associated h1, h2 are both matrix type, if first goal vertex and

second start vertices are same, and first col size and second row size are same then the simulator

multiplies the two matrices. If start and goal are same but not 1 then it calculates a trace from the

result matrix M , and inserts its record into database and returns the handle.

mult(h1, h2)
rec1 = db.select(h1) rec2 = db.select(h2)
if (n1 " m2) or (RC1 " LC2) then return ⊥
M = M1 · M2

h← db.select(M, (m1, LC1), (n2, RC2))
if h does not exist in database then

h := new handle

db.insert(h,M, (m1, LC1), (n2, RC2))
if types of h1, h2 are matrix type and (LC1 = RC2) and (LC1 " 1) then

create 1 × 1 matrix Mt

(Mt)1,1 = M1,1 + MLC1,RC2

ht ← db.select(Mt, (1, 0), (1, 0))
if ht does not exist in database then

ht := new handle

db.insert(ht,Mt, (1, 0), (1, 0))
return (h, ht)

else return h

Scalar Multiplication. It multiplies a trace value in scalar type record by a matrix in a matrix

type record and inserts the result record into database and returns the handle.

scalar_mult(h1, h2)
rec1 = db.select(h1) rec2 = db.select(h2)
let rec1 be a n × n edge matrix.

98

let rec2 be a 1 × 1 trace matrix.

if not above then return ⊥
M = (M2)1,1 · M1

h← db.select(M, (m1, LC1), (n1, RC1))
if h does not exist in database then

h := new handle

db.insert(h,M, (m1, LC1), (n1, RC1))
return h

Analysis. We discuss about difference of distributions of adversary’s view between real

model and simulation. The simulator replaces random elements of edge matrices into variables,

therefore it’s possible that result of calculation of the elements is in database at real model but not

in database at simulation. In such a case, he returns existing handle at real model and returns new

handle at simulation, therefore, the view of adversary is different. But its provability is bounded

above T3/p from the Schwartz-Zippel lemma [42] [50] where an adversary receives at most T

handles from the oracle and the secrets r, s are independently and uniformly chosen from any

finite setS, |S | = p.

We show there is no record of our blinding factor in a simulator’s database. Now we recall that

our blinding factor is concatenation of all elements in the product matrix R′1(Π j∈[n]rj+Π j∈[n]sj)R1.

We confirm about edge matrix records at each query. After setup, value in matrix column is M

s.t. M1,1 = Ri and Mi, j = Si for every edge ei→ j . When two matrices M1 and M2 are added by add

query, the result matrix M is such that M1,1 = (M1)1,1 + (M2)1,1,Mi, j = (M1)i, j + (M2)i, j and other

elements are all zero. When two matrices M1 and M2 are multiplied by mult query, if LC1 " 1′

or RC2 " 1 then the result matrix M is such that M1,1 = (M1)1,1(M2)1,1,Mi,k = (M1)i, j(M2) j,k

and other elements are all zero. If LC1 = 1′ and RC2 = 1 then the result matrix M is such that

M1,1 = (M1)1,1(M2)1,1+ (M1)i, j(M2) j,k and other elements are all zero. When a trace v and matrix

M1 are multiplied by scalar_mult, the result matrix M is such that M1,1 = v(M1)1,1,Mi, j = v(M1)i, j
and other elements are all zero. We notice that elements in M1 and M2 in above queries may be

multiplied by some traces by scalar_mult queries.

Now we consider whether there is a record of matrix M′ s.t. M′1,1 = Πi∈[n]Ri + Πi∈[n]Si and

other elements are all zero for our blinding factor.

99

Claim 4 In the database, if there is records where LC = 1′ and RC = 1 and M1,1 has some value

v and Mi, j (i, j " 1) is zero then

v = Σsc(Πsc′i (Π j∈sc′i Rj + Π j∈sc′i Sj))(Π j∈scRj + Π j∈scSj), · · ·Eq(1)

where sc denotes a short cycle which starts and goals at vertex 1, sc′ denotes a short cycle which

does not include vertex 1.

Proof. A trace is registered into database when a short cycle which does not include vertex 1 is

made by mult query. After the trace is registered, a matrix may be scalar multiplied by scalar_mult

query. Those matrices may be added and multiplied by add and mult. Using such two matrices,

when a short cycle which starts and goals at vertex 1 is made by mult, a record where LC = 1′

and RC = 1 and M1,1 has some value v and Mi, j (i, j " 1) is zero is registered. The form of v

is v = (ΣscΠsc′i (Π j∈sc′i Rj + Π j∈sc′i Sj))(Π j∈scRj + Π j∈scSj). From the observation before Claim 4,

add and scalar_mult does not change the color and element position of the result matrix, therefore

records where LC = 1′ and RC = 1 must be made from records where LC = 1′ and RC = 1 by add

or scalar_mult. The result M1,1 has a form v = Σsc(Πsc′i (Π j∈sc′i Rj+Π j∈sc′i Sj))(Π j∈scRj+Π j∈scSj).✷

Claim 5 The Eq(1) never equals to Πi∈[n]Ri + Πi∈[n]Si.

Proof. To make Πi∈[n]Ri + Πi∈[n]Si, it is necessary to multiply one (Π j∈scRj + Π j∈scSj) and

some (Π j∈sc′i Rj + Π j∈sc′i Sj) because the input graph does not contain any Hamilton Cycle. The

result has cross terms of Rj Sj , and for canceling this cross terms it needs a new product of

(Π j∈scRj + Π j∈scSj) and (Π j∈sc′i Rj + Π j∈sc′i Sj) of smaller short cycles. Then the result has their

new cross terms. To cancel those cross terms recursively, finally it becomes sums of products of

(Π j∈scRj +Π j∈scSj) and (Π j∈sc′i Rj +Π j∈sc′i Sj) of minimum short cycles, and their cross terms are

unable to be canceled. Therefor the Eq(1) never equals to Πi∈[n]Ri + Πi∈[n]Si. ✷

Now the proof of Theorem 2 is complete. ✷

Chapter 6

Conclusions

Cryptography is now required to have the ability not only to hide secret data but also to gain added-

value by analyzing or calculating the hidden secret safely. We studied homomorphic property that

enables us to perform arithmetic calculation through privacy-preserving encodings of secrets.

Our research objects are homomorphic encryption as an encryption scheme which recovers

calculated secret, and multilinear maps as an encoding scheme which outputs a deterministic

value corresponding to calculation result.

One of reasons why computation of homomorphic encryption is very heavy is its multi-

dimensional slot structure based on the cyclotomic ring. We improved the slot structure by

making it one dimensional by using the decomposition ring. We constructed the BGV and FV

homomorphic schemes on the decomposition ring. We confirmed that our schemes are several

times faster than HElib which is based on cyclotomic ring by some experiments. This simple

slot structure based on decomposition ring is effective to parallel processing in bootstrap, we

constructed fast bootstrap method for our scheme.

We studied multilinear map, in particular graded encoding system with useful properties:

to extract a deterministic value at only a specific level and one-wayness regarding the level of

encodings. We proposed two applications using multilinear maps: a group key exchange and

witness encryption based on Hamilton Cycle Problem. The multi-linearity makes our group key

exchange be constant communication size and constant computational cost with respect to the

number of parties.

101

Bibliography

[1] S. Arita and S. Handa,ʠ Subring Homomorphic Encryption,ʡInformation Security and

Cryptology - ICISC 2017, ed. H. Kim and D.C. Kim, Cham, pp.112-136, Springer Interna-

tional Publishing, 2018.

[2] M.R. Albrecht,ʠOn Dual Lattice Attacks Against Small-Secret LWE and Parameter Choices

in HElib and SEAL,ʡAdvances in Cryptology - EUROCRYPT 2017, ed. J.S. Coron and

J.B. Nielsen, Cham, pp.103-129, Springer International Publishing, 2017.

[3] J. Alperin-Sheriff and C. Peikert,ʠPractical Bootstrapping in Quasilinear Time,ʡAdvances

in Cryptology - CRYPTO 2013, ed. R. Canetti and J.A. Garay, Berlin, Heidelberg, pp.1-20,

Springer Berlin Heidelberg, 2013.

[4] R.P. Martin R. Albrecht and S. Scott,ʠOn the concrete hardness of Learning with Errors,ʡ

Journal of Mathematical Cryptology. Volume 9, Issue 3, pp.169-203, 2015.

[5] Z. Brakerski,ʠFully Homomorphic Encryption without Modulus Switching from Classical

GapSVP,ʡAdvances in Cryptology - CRYPTO 2012, ed. R. Safavi-Naini and R. Canetti,

Berlin, Heidelberg, pp.868- 886, Springer Berlin Heidelberg, 2012.

[6] Z. Brakerski, C. Gentry and V. Vaikuntanathan,ʠ (Leveled) Fully Homomorphic Encryp-

tion Without Bootstrapping,ʡProceedings of the 3rd Innovations in Theoretical Computer

Science Conference, ITCS ʟ12, New York, NY, USA, pp.309-325, ACM, 2012.

[7] Z. Brakerski and V. Vaikuntanathan, ʠ Efficient Fully Homomorphic Encryption from

(Standard) LWE,ʡProceedings of the 2011 IEEE 52Nd Annual Symposium on Foundations

of Computer Science, FOCS ʟ11, Washington, DC, USA, pp.97-106, IEEE Computer

Society, 2011.

103

104

[8] E. Bresson, O. Chevassut, D. Pointcheval and J. J. Quisquater, "Provably Authenticated

Group Diffie-Hellman Key Exchange," In proceedings of 8th ACM Conference on CCS E.

, pp. 255-264, 2001.

[9] D. Boneh and A. Silverberg, "Applications of multilinear forms to cryptography," Contem-

porary Mathematics, 324:71-90, 2003. 1, 2, 5, 10, 74, 75.

[10] J. H, Cheon, A. Kim, M. Kim and Y. Song, "Homomorphic Encryption for Arithmetic

of Approximate Numbers," International Conference on the Theory and Application of

Cryptology and Information Security, pp.409-437, Springer, 2017.

[11] J. H. Cheon, M. Kim and K. Lauter, "Homomorphic Computation of Edit Distance,"

Financial Cryptography and Data Security 2015, LNCS 8976, pp.194-212, 2015.

[12] H. Chen, K. Laine, P. Rindal, "Fast Private Set Intersection from Homomorphic Encryption,"

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications

Security, 1243-1255, ACM, 2017.

[13] J.S. Coron, T. Lepoint and M. Tibouchi, "Practical Multilinear Maps over the Integers,"

CRYPTO 2013, pp.476-493.

[14] E. Crockett and C. Peikert, "Λ o λ : A Functional Library for Lattice Cryptography," IACR

Cryptology ePrint Archive, 2015-1134, 2015.

[15] A. Costache and N. P. Smart,ʠWhich Ring Based Somewhat Homomorphic Encryption

Scheme is Best?,ʡProceedings of the RSA Conference on Topics in Cryptology - CT-RSA

2016 - Volume 9610, New York, NY, USA, pp.325-340, Springer-Verlag New York, Inc.,

2016.

[16] J. Fan and F. Vercauteren,ʠ Somewhat Practical Fully Homomorphic Encryption,ʡCryp-

tology ePrint Archive, Report 2012/144, 2012. https://eprint.iacr.org/2012/144.

[17] I. Damgård, V. Pastro, N. Smart and S. Zakarias,ʠMultiparty Computation from Somewhat

Homomorphic Encryption,ʡAnnual Cryptology Conference, Springer, pp.643-662, 2012.

[18] S. Garg, C. Gentry and S. Halevi, "Candidate Multilinear Maps from Ideal Lattices and

Applications," In EUROCRYPT 2013, Lecture Notes in Computer Science. Springer, 2013.

Cryptology ePrint Archive, Report 2012/610.

105

[19] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai and B. Waters, "Candidate Indistin-

guishability Obfuscation and Functional Encryption for all Circuits," FOCS 2013, pp.40-49.

[20] S. Garg, C. Gentry, S. Halevi, A. Sahai and B. Waters, "Attribute-based encryption

for circuits from multilinear maps," Cryptology ePrint Archive, Report 2013/128, 2013.

http://eprint.iacr.org/.

[21] S. Garg, C. Gentry, A. Sahai and B. Waters, "Witness Encryption and its Applications,"

STOC ’13, Proceedings of the forty-fifth annual ACM symposium on Theory of Computing,

pp.467-476.

[22] C. Gentry,ʠ Fully Homomorphic Encryption Using Ideal Lattices,ʡProceedings of the

Forty-first Annual ACM Symposium on Theory of Computing, STOC ʟ09, New York, NY,

USA, pp.169-178, ACM, 2009.

[23] C. Gentry, S. Halevi and N.P. Smart,ʠBetter Bootstrapping in Fully Homomorphic Encryp-

tion,ʡPublic Key Cryptography – PKC 2012, ed. Fischlin, Marc and Buchmann, Johannes

and Manulis, Mark, Berlin, Heidelberg, pp.1-16, Springer Berlin Heidelberg, 2012.

[24] C. Gentry, S. Halevi and N.P. Smart,ʠ Homomorphic Evaluation of the AES Circuit,ʡ

Advances in Cryptology - CRYPTO 2012, ed. R. Safavi-Naini and R. Canetti, Berlin,

Heidelberg, pp.850-867, Springer Berlin Heidelberg, 2012.

[25] C. Gentry, S. Halevi and N.P. Smart,ʠ Fully Homomorphic Encryption with Polylog Over-

head,ʡAnnual International Conference on the Theory and Applications of Cryptographic

Techniques, pp.465-482, Springer, 2012.

[26] T. Graepel, K. Lauter and M. Naehrig,ʠML Confidential: Machine Learning on Encrypted

Data,ʡInformation Security and Cryptology - ICISC 2012, ed. T. Kwon, M.K. Lee, and D.

Kwon, Berlin, Heidelberg, pp.1-21, Springer Berlin Heidelberg, 2013.

[27] S. Halevi and V. Shoup,ʠAlgorithms in HElib,ʡAdvances in Cryptology - CRYPTO 2014,

ed. J.A. Garay and R. Gennaro, Berlin, Heidelberg, pp.554-571, Springer Berlin Heidelberg,

2014.

106

[28] S. Halevi and V. Shoup,ʠBootstrapping for HElib,ʡAdvances in Cryptology - EUROCRYPT

2015, ed. E. Oswald and M. Fischlin, Berlin, Heidelberg, pp.641-670, Springer Berlin

Heidelberg, 2015.

[29] S. Halevi and V. Shoup,ʠ Faster Homomorphic Linear Transformations in HElib,ʡAnnual

International Cryptology Conference, pp.93-120, Springer, 2018.

[30] R.M. Karp, "Reducibility among Combinatorial Problems," In Complexity of Computer

Computations, pp.85-103, 1972.

[31] J. Kilian, "Founding cryptography on oblivious transfer," In Janos Simon, editor, STOC,

pp.20-31. ACM, 1988.

[32] D. Kim and Y. Song,ʠApproximate Homomorphic Encryption over the Conjugate-Invariant

Ring,ʡInformation Security and Cryptology - ICISC 2018, ed. K. Lee, Cham, pp.85-102,

Springer International Publishing, 2019.

[33] T. Lepoint, "Proof-of-concept implementation of a cryptographic multilinear maps on the

integers," https://github.com/tlepoint/multimap.

[34] J. Liu, J. Li, S. Xu and B.C. Fung,ʠ Secure Outsourced Frequent Pattern Mining by Fully

Homomorphic Encryption,ʡBig Data Analytics and Knowledge Discovery, ed. S. Madria

and T. Hara, Cham, pp.70-81, Springer International Publishing, 2015.

[35] K. Lauter, A. Lopez-Alt and M. Naehrig,ʠ Private Computation on Encrypted Genomic

Data,ʡProgress in Cryptology - LATINCRYPT 2014, ed. D.F. Aranha and A. Menezes,

Cham, pp.3-27, Springer International Publishing, 2015.

[36] W. Lu, S. Kawasaki and J. Sakuma, "Using Fully Homomorphic Encryption for Statistical

Analysis of Categorical, Ordinal and Numerical Data," Network and Distributed System

Security Symposium (NDSS) in February, 2017.

[37] K. Laine and R. Player, "Simple Encrypted Arithmetic Library - SEAL(v2.0)," Technical

report, Microsoft Research, September 2016. MSR-TR-2016-52.

[38] V. Lyubashevsky, C. Peikert, and O. Regev,ʠOn Ideal Lattices and Learning with Errors over

Rings,ʡAdvances in Cryptology EUROCRYPT 2010, ed. H. Gilbert, Berlin, Heidelberg,

pp.1-23, Springer Berlin Heidelberg, 2010.

107

[39] V. Lyubashevsky, C. Peikert and O. Regev, "A Toolkit for Ring-LWE Cryptography," EU-

ROCRYPT 2013, LNCS 7881, pp 35-54, Springer, 2013.

[40] C. M. Mayer, "Implementing a Toolkit for Ring-LWE Based Cryptography in Arbi-

trary Cyclotomic Number Fields," Cryptology ePrint Archive, Report 2016/049, 2016.

http://eprint.iacr.org/2016/049.

[41] O.Regev, "On Lattices, Learning with Errors, Random Linear Codes, and Cryptography,"

In Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOCʟ05)

Harold N. Gabow and Ronald Fagin Eds., ACM, 84-93, 2005.

[42] T. Schwartz, "Fast probabilistic algorithms for verification of polynomial identities," J.

ACM, 27(4):pp.701-717, 1980.

[43] A. Shamir, "How to share a secret," Communications of the ACM, Vol.22, no.11, pp.612-

613, 1979.

[44] V. Shoup, "Sequences of Games: A Tool for Taming Complexity in Security Proofs,"

Cryptology ePrint Archive, Report 2004/332, 2004. http://eprint.iacr.org/ 2004/332.pdf. 42,

59, 60, 206, 209.

[45] N.P. Smart and F. Vercauteren,ʠ Fully homomorphic SIMD operations,ʡDesigns, Codes

and Cryptography, vol.71, no.1, pp.57-81, Apr 2014.

[46] M. Steiner, G. Tsudik and M. Waidner, "Diffie-Hellman Key Distribution Extended to

Group Communication," In Proceedings of the 3rd ACM Conference on Computer and

Communications Security (CCS ʟ96), pp.31.37. ACM Press, 1996. 13, 92, 93, 96, 104.

[47] W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider and I. Wehrenberg, "TASTY: Tool for

Automating Secure Two-partY computations," Proceedings of the 17th ACM conference on

Computer and communications security, pp.451-462, ACM, 2010.

[48] S.Terada, H.Nakano, S.Okumura and A.Miyaji, "On the security of Ring-LWE with Homo-

morphic Encryption," SCIS2018.

[49] A.C. Yao, "How to generate and exchange secrets," 27th Annual Symposium on Foundations

of Computer Science, pp.162-167, 1986.

108

[50] R. Zippel, "Probabilistic algorithms for sparse polynomials," In E. W. Ng, editor, EU-

ROSAM, volume 72 of Lecture Notes in Computer Science, pp. 216-226.Springer, 1979.

