
Detecting Fraudulent Behavior Using Recurrent
Neural Networks

Yoshihiro Ando1,2,a),b) Hidehito Gomi2,c) Hidehiko Tanaka1,d)

Abstract: Due to an increase in illegal accesses to Internet services, detecting and preventing them has
become important. To prevent an illegal access, not only rule-based techniques but also machine learning
techniques have been used. In the field of security, such as malware detection, machine learning techniques
are used to learn behavioral patterns and detect those that are suspicious. However, there are few studies
targeting the behavioral patterns of a malicious user engaged in fraudulent acts on Internet services. In this
paper, we propose the approach which uses the patterns in web access logs to detect fraudulent behaviors.
We apply and evaluate a recurrent neural network (RNN) to recognize these behaviors. Our result indicates
that RNN is very effective for fraudulent behavior detection.
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1. Introduction

According to a survey conducted by the Center for Strate-

gic & International Studies, at least $375 billion is lost glob-

ally each year as a result of cybercrime [11]. This survey

includes indirect costs, such as the leakage of personal infor-

mation and intellectual property theft. Counting only those

losses caused by online credit card fraud, another survey

concluded that at least $4.2 billion was lost in 2010 [1]. In

such situations, several machine learning techniques, such

as neural networks, have been applied to detect and prevent

credit card fraud [13].

The previous studies of credit card fraud used transaction

logs instead of the entire logs left by a malicious user on the

targeted site. And these studies were not intended to model

the behavior of malicious users. In adition, credit card logs

are so sensitive that they are not easy to use.

Considering web logs as time series data, there are several

techniques with which they can be modeled: Hidden Markov

models (HMMs), state space models (SSM), and recurrent

neural networks (RNN) among them. Of these, the RNN is

promising in the context of deep learning. RNNs are used for

modeling sequential data, such as natural language, speech,

and handwritten characters. We consider that RNNs have

also been effective in modeling behavioral patterns using web

server logs.

This paper proposes a novel machine learning approach

to detecting online credit card fraud through fraudulent be-
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haviors. After analyzing web server log data from users who

attempted illegal purchases, provided by Yahoo JAPAN, we

found a characteristic pattern in the log. The behavior of

the malicious user who intends to use a stolen credit card

number to buy prepaid cards, such as Amazon gift cards,

contains search trials in the auction service. We applied an

RNN to the web log data left by a malicious user who tried

to use a stolen credit card on an online auction service and

evaluated its effectiveness. As a result, we obtained a model

that could detect a malicious user who intended to use a

stolen credit card to buy prepaid cards.

2. Related Work

The RNN is a kind of artificial neural network that has

several subtypes. One basic type of RNN is called a Hop-

field network, which was developed by John Hopfield in 1982

[9]. A Hopfield network is not generic; it has a symmetrical

structure, but cannot process sequential data.

The Elman network is another type of RNN, developed by

Jeff Elman in 1990 [4]. This network type consists of 3 lay-

ers (Input, Hidden, and Output) with circular connections

between units in the hidden layer. These connections take

the output value of the previous time from the unit in the

same hidden layer as input of the current time. This net-

work structure reflects the reciprocal influence of sequential

ordered data.

The Jordan network is another type of RNN, which was

developed by Michael I. Jordan in 1986 [10]. The Jordan

network is similar to the Elman network, except that its

recurrent connections are between units in the input and

output layers.

Elman networks have generally been shown to be supe-

rior to Jordan networks. Thus, in this paper, our approach
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is based on Elman networks.

There are some applications of RNN in the field of natu-

ral language processing. Bengio et al. use an RNN to learn

the context of sentence. Their proposed approach resulted

in better precision than traditional the n-gram model [2].

Mikolov et al. also use RNN for learning the context of

phrases and compared it to the n-gram model [12].

Speech recognition is also an important application of

RNNs. Graves et al. use an RNN with long short-term

memory (LSTM) to model spoken language [6]. LSTM is a

special processing unit in the RNN hidden layer developed

by Hochreiter and Schmidhuber in 1997 [8]. LSTM can take

important parts of the sequence data and dismiss data that

are not important. This feature facilitates convergence in

the training phase and avoids the vanishing and exploding

gradient problems.

Handwritten character recognition is another field to

which RNNs have been successfully applied. Graves et al.

use an RNN for on-line handwriting recognition. They train

the RNN for sequence labeling to track the movement of

the pen. Their proposed approach recorded better precision

than commonly used HMM approaches [5]. Graves et al.

also use an RNN for off-line handwriting recognition [7].

In the security literature, RNN applications are few.

Sheikhan et al. use an RNN to improve IDS detection pre-

cision. They use a customized RNN, called a reduced-size

RNN, for misuse-based IDS [15].

As a measure for credit card fraud detection, there are sev-

eral studies that use ordinary feed-forward neural networks,

including that by Patidar et al. [13]. However, literature

using RNNs for this purpose does not exist to the best of

our knowledge.

In the security research field, particularly in malware de-

tection, behavior-based approaches have recently been used.

Burguera et al. collect behavioral information from the An-

droid platform using crowdsourcing and apply a k-means

clustering approach to detect malware [3]. Rieck et al. use

machine learning techniques of clustering and classification

to learn the behavior of malware and to detect it automat-

ically [14]. However, these researches are not intended to

detect the behavior of malicious users, but of malicious soft-

ware. Furthermore, these research do not model the order

of actions, in contrast with our approach.

3. Our Approach

Our RNN consists of 3 layers: input, hidden, and output

layers. The number of units in the input layer varies ac-

cording to the features we use. The output layer has two

units that each represents a possible classification. The pa-

rameters of the RNN are learned using a gradient descent

method with backpropagation similar to that of feed-forward

neural networks. For RNNs, there are two major learning al-

gorithms: backpropagation through time (BPTT) [16] and

real-time recurrent learning (RTRL) [17]. We use BPTT

because it has a simple structure and learns fast.

It is difficult to train an RNN on a large amount of time

series data. Many epochs cause difficulty in learning, as in

deep learning. Therefore, several techniques, such as LSTM,

which is detailed later, are used to avoid problems like van-

ishing and exploding gradients.

3.1 RNN

A typical RNN has three layers: input, output, and hid-

den layers of fully connected units. Figure 1 and 2 depicts

this basic structure, which is adopted for our RNN.

Fig. 1 RNN Structure

Fig. 2 RNN Hidden Layer Structure. t is the current time and
t− 1 is the previous time. These two layers are the same.

3.2 Data Encoding

Neural network uses mathematical formulas internally.

Consequently, target data must be expressed as a numerical

value. We use web access logs to detect fraudulent behav-

ior, which are generally recorded as text data. Therefore,
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we must encode the logs with numerical values before pro-

cessing.

One approach to encoding text data for machine learning

is based on the presence or absence of a given text element.

Assuming that the existence of a specific word in the target

text is one feature, we can represent it in binary. For ex-

ample, if the text“ foo” exists in the target text, we can

encode the existence of the word“ foo”as 1. Figure 3 shows

our approach to encoding web access logs.

Fig. 3 Data Encoding. Table A has original logs. Access Time
is the time that the user accessed. Unique Cookie ID is
the value of the browser cookie issued uniquely to each
browsers. Destination Host Name is the host name to
which the user accessed. Table B has conversion data
which converts the host name to the corresponding num-
ber of the feature field. Table C is the result of data
encoding.

Table A contains a section of the web access log, featur-

ing access date and time, a unique cookie ID, and the des-

tination host name, from left to right. These are listed in

ascending order by time. Table B shows a corresponding list

of host names and feature numbers. Using Tables A and B,

we can obtain the training data. For example, in Table A,

the 3rd row has a value of ‘auction.yahoo.co.jp’ for the tar-

geted host and so the corresponding column of this feature

is set to 1 in Table C, and the remaining columns related to

other features are set to 0.

3.3 Learning

We use BPTT to train our network. Figure 4 shows the

BPTT algorithm overview.

Fig. 4 BPTT. t is the current time. ∂E
∂ut

j

is the partial differential

of the error function with the input value to the jth unit
in the hidden layer. ∂E

∂vt
j

is the partial differential of the

error function with the input value to the kth unit in the
output layer. w is the parameter matrix.

Our goal in training an RNN is minimizing Eq. 1. n is

the index for each data point in the dataset and t is the

time step. k is the index of the unit in the output layer. w

is a parameter matrix containing connection weights. d is

the expected value of the specific unit corresponding to the

input data. xn is the input values vector of nth input.

E(w) = −
∑
n

∑
t

∑
k

dtnk log y
t
k(xn;w) (1)

In the feed-forward phase, the input value of the units in

the hidden layer is represented by Eq. 2. In Eq. 2, ut
j is the

input value of the jth unit of the hidden layer at time step

t. i is the index of the unit in the input layer. wji is the

weight of the connection between the ith unit of the input

layer and the jth unit of the hidden layer. xt
i is the input

value of the ith unit in the input layer at time step t. j′ is

the index of the unit in the hidden layer, used to distinguish

it from j. wjj′ is the weight of the recurrent connection

between units in the hidden layer. zt−1
j′ is the output value

of the j′th unit in the hidden layer at time step t− 1.

ut
j =

∑
i

wjix
t
i +

∑
j′

wjj′z
t−1
j′ (2)

We use a sigmoid function as the activation function of

units in the hidden layer. The sigmoid function is repre-

sented by Eq. 3:

f(x) =
1

1 + e−x
(3)

By using a sigmoid function, we obtain Eq. 4 as the out-

put value of the jth unit in the hidden layer.

ztj = f(ut
j) (4)

We can then obtain the input value to the unit in the
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output layer by Eq. 5. wkj is the weight of the connection

between the jth unit in the hidden layer and kth unit in the

output layer. ztj is the output value of the jth unit in the

hidden layer at time step t.

vtk =
∑
j

wkjz
t
j (5)

Eq. 6 conducts a classification. ytk is the output of the

kth unit in the output layer at time step t. vtk is the input

value to the kth unit in the output layer at time step t. L is

the number of units in the output layer. We can determine

which is the most likely class by the ouput value of the unit

in the hidden layer.

ytk =
exp(vtk)∑L
l=1 exp(v

t
l )

(6)

Backpropagation starts with calculating the partial differ-

ential of the error function with the input value of the unit

in the output layer. Eq. 7 shows the value of the partial

differential of the error function with the input value of the

unit in the output layer.

∂E

∂vtk
= ytk − dtk (7)

vtk is the input value of the kth unit in the output layer

at time step t. dtk is the target value of the kth unit in the

output layer at time step t. The target values are one or zero

specified in the training data. The value one means the unit

should be the best unit represents that the data is fraudu-

lent or not. For example, if the 0th unit is corresponded to

the label of fraudulent and the input data is fraudulent, the

0th unit should have value one. The value zero means the

unit should not be the best unit.

The partial differential of the error function with the in-

put value of the jth unit in the hidden layer at time step t

is written as:

∂E

∂ut
j

=

(∑
k

wkj
∂E

∂vtk
+
∑
j′

wj′j
∂E

∂ut+1
j′

)
f ′(ut

j) (8)

The partial differential of the error function with the con-

nection weight between the units in the input and hidden

layers is represented as:

∂E

∂wji
=

T∑
t=1

∂E

∂ut
j

∂ut
j

∂wji

=
T∑

t=1

∂E

∂ut
j

xt
i (9)

The partial differential of the error function with the con-

nection weight of the internal connections in the hidden layer

is represented as:

∂E

∂wjj′
=

T∑
t=1

∂E

∂ut
j

∂ut
j

∂wjj′

=

T∑
t=1

∂E

∂ut
j

ut−1
j (10)

Similarly to the above, the partial differential of the error

function with the connection weight between the unit in the

hidden and output layers is represented as:

∂E

∂wkj
=

T∑
t=1

∂E

∂vtk

∂vtk
∂wkj

=

T∑
t=1

∂E

∂vtk
ztk (11)

We then subtract the difference from the old weight using

these differences and set as the new connection weight. Up-

dating weight by gradient descent is represented as Eq. 12,

13, and 14.

wnew
ji = wji − ε

∂E

∂wji
(12)

wnew
jj′ = wjj′ − ε

∂E

∂wjj′
(13)

wnew
kj = wkj − ε

∂E

∂wkj
(14)

wnew
ji and wji are the updated and current value of the

connection weight between the units in the input and hidden

layers. wnew
jj′ and wjj′ are the updated and current value

of the recurrent connection weight between the units in the

hidden layer. wnew
kj and wkj are the updated and current

value of the connection weight between the units in the hid-

den and output layers. ε is called a learning coefficient.

3.3.1 LSTM

The LSTM was developed by Hochreiter and Schmidhu-

ber in 1997 [8]. It can ease the difficulty of learning long

sequences of data when using backpropagation and can also

suppress the vanishing and exploding gradient problems.

Fig. 5 LSTM. Memory cell has the value of the previous time
step. Forget gate determines whether the previous value
is used or not.

The internal structure of the LSTM is shown in Figure

5. We used the LSTM as a control against which we could

evaluate our RNN. The result of this evaluation is discussed

in the following section.
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4. Evaluation

4.1 Dataset

Web access logs provided by Yahoo JAPAN were used as

an evaluation dataset. These logs are those of both mali-

cious and normal users. The logs were recorded from April

29, 2016 to May 5, 2016. Malicious users had stolen credit

cards and tried to buy prepaid cards at Yahoo Auction.

Table 1 Number of unique browsers visited to Yahoo JAPAN

Date Number of browsers
April 29, 2016 95,123,327
April 30, 2016 92,878,076
May 1, 2016 92,141,013
May 2, 2016 98,050,854
May 3, 2016 94,517,378
May 4, 2016 93,257,615
May 5, 2016 93,291,749

Table 2 Training dataset provided by Yahoo JAPAN

Label Number of browsers Number of logs
Postive 11 9,286
Negative 300 132,853

Table 3 Test dataset provided by Yahoo JAPAN

Label Number of browsers Number of logs
Postive 10 7,577
Negative 300 139,001

Table 1 shows the number of unique browser visited to

Yahoo JAPAN from April 29, 2016 to May 5, 2016. Table

2 and 3 show the details of our dataset. We chose ran-

domly from all visits except that of the fraudulent user and

regarded them as negative data, to save computational re-

sources. Positive data consisted of the web access logs of

malicious users. This number was so small that training

was hindered by class imbalance. The class imbalance prob-

lem is common in machine learning, where the amount of

data from one class far exceed that of the other. In this

situation, learning tends to fail; however, it is often the case

in the security field that we cannot obtain a sufficient num-

ber of positive data examples. Therefore, it is often impor-

tant that we properly model fraudulent behavior even using

class-imbalanced data.

4.2 Test Environment

Our testing environment was a CentOS 7.2.1511 virtual

server with a Intel Xeon 1.80GHz processor and 8 GB of

memory. The programming language was JavaScript run-

ning on Node.js version 6.3.1.

4.3 Training Conditions

Our RNN structure was consisted of 153 units in the input

layer, 14 units in the hidden layer, and 2 units in the output

layer. Because the number of the positive data is less than

the number of the negative data, the number of the units

in the input layer was decided to correspond to the num-

ber of the host names in the positive data. The threshold

of the value of the error function was set to 0.5. Training

was to be discontinued when the value of the error function

was less than the threshold. The learning coefficient was

set to 0.00001. The weight of the connection was initialized

by the random number according to mean 0 and standard

deviation 0.001.

4.4 Value of Error Function

Fig. 6 Value of error function

Figure 6 shows the value of the error function as the num-

ber of times of training. There are sharp increases in places

in the figure 6. These increases indicate that the failures of

the gradient descent occured. However, the value of the er-

ror function finally converged after 3,875 backpropagations.

The training took 17 hours and 56 minutes and 21 seconds.

4.5 Results

Table 4 shows the results of our evaluation. F-measures

were calculated using the training dataset and the test

dataset described in the section 4.1. We used two types

of RNN, RNN without LSTM and RNN with LSTM, with

sigmoid units. For this evaluation, we used not only two

types of RNNs but also two types of SVM, with linear and

radial basis function kernel types, respectively. The results

indicate that an RNN can accurately detect malicious be-

havior better than an SVM. Althogh two types of RNN had

the same accuracy, RNN with LSTM converged faster than

RNN without LSTM.

Table 4 Evaluation Result

Algorithm F-measure
RNN (without LSTM) 1.0000
RNN (with LSTM) 1.0000
SVM (linear kernel) 0.5967
SVM (RBF kernel) 0.5844

5. Conclusions

Our evaluation results indicate that an RNN is superior to

other common machine learning techniques, such as SVMs,

for learning a malicious user’s behavior using web access

logs.
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6. Future Work

Although our approach has been proven to be effective,

the factor that most contributes to this result has not yet

been determined. We will investigate the relationship be-

tween patterns of malicious behavior and the internal struc-

ture of our RNN. A current hypothesis is that there are

clear differences between the behaviors of legitimate and

malicious users. Further research can make these differences

clear using the internal parameter values of our neural net-

work during training.

In this paper, we set as our target the user who attempts

to use stolen credit cards to buy prepaid cards on an Inter-

net auction site. We would like to generalize our approach

in order to apply it to other fraudulent behaviors.
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Van Eeten, M. J., Levi, M., Moore, T., and Savage, S.
Measuring the cost of cybercrime. The economics of infor-
mation security and privacy (2013), 265–300.

[2] Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C.
A neural probabilistic language model. journal of machine
learning research 3, Feb (2003), 1137–1155.

[3] Burguera, I., Zurutuza, U., and Nadjm-Tehrani, S.
Crowdroid: behavior-based malware detection system for an-
droid. In Proceedings of the 1st ACM workshop on Secu-
rity and privacy in smartphones and mobile devices (2011),
ACM, pp. 15–26.

[4] Elman, J. L. Finding structure in time. Cognitive science
14, 2 (1990), 179–211.

[5] Graves, A., Liwicki, M., Bunke, H., Schmidhuber, J.,
and Fernández, S. Unconstrained on-line handwriting
recognition with recurrent neural networks. Advances in
Neural Information Processing Systems (2008), 577–584.

[6] Graves, A., Mohamed, A.-r., and Hinton, G. Speech
recognition with deep recurrent neural networks. In 2013
IEEE international conference on acoustics, speech and sig-
nal processing (2013), IEEE, pp. 6645–6649.

[7] Graves, A., and Schmidhuber, J. Offline handwriting
recognition with multidimensional recurrent neural networks.
Advances in neural information processing systems (2009),
545–552.

[8] Hochreiter, S., and Schmidhuber, J. Lstm can solve hard
long time lag problems. Advances in neural information pro-
cessing systems (1997), 473–479.

[9] Hopfield, J. J. Neural networks and physical systems with
emergent collective computational abilities. Proceedings of
the national academy of sciences 79, 8 (1982), 2554–2558.

[10] Jordan, M. I. Attractor dynamics and parallelism in a con-
nectionist sequential network. In Proceedings of the Eighth
Annual Conference of the Cognitive Science Society (1986).

[11] Losses, N. Estimating the global cost of cybercrime.
McAfee, Centre for Strategic & International Studies (2014).

[12] Mikolov, T., Karafiát, M., Burget, L., Cernockỳ, J.,
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