
1

A Hardware/Software Approach for Thread Level Control Speculation

Luong Dinh Hung,
†
Hideyuki Miura,

†
Chitaka Iwama ,

†

Daisuke Tashiro,
†
Niko Demus Barli,

†
Shuichi Sakai

†

and Hidehiko Tanaka
†

Speculative multithreading is a promising approach that exploits thread level parallelism
from sequential programs. This paper focuses on thread level control speculation for a specula-
tive multithreading architecture, and proposes a hardware/software techniques that improves
its performance. Our approach is to use static analysis of control flow to validate dynamic
prediction at an earlier stage, and also to reduce task of the dynamic thread predictor. We
show that this approach reduces prediction miss penalty and, at the same time, improves the
thread prediction accuracy.

1. Introduction

The limit of Instruction Level Parallelism (ILP)
hinders superscalar microprocessors from achiev-
ing high performance against general purpose ap-
plication [1]. The approach of exploiting Thread
Level Parallelism (TLP) has proved to be very
successful for several types of applications, such
as multiprogrammed workloads or multithreaded
applications. However, applying this approach to
sequential programs still remains a challenge.

Recently, numerous researches have focused on
speculative multithreadings to exploit TLP from
sequential applications [2] [3] [7]. Those archi-
tectures break sequential programs into threads
and execute them in parallel using multiple exe-
cution units. In order to ease the program par-
titioning, threads that are candidates for parallel
execution are allowed to be dependent on each
other, i.e. data dependences or control depen-
dences may exist between threads. In exchange,
additional hardware and software support is inte-
grated to maintain sequential semantics.

Since the effectiveness of such parallelization is
limited by the inter-thread dependences, specu-
lative multithreading architectures perform var-
ious forms of thread level speculation. Threads
are speculatively executed in parallel regardless of
data or control dependences among them. Inten-
sive researches have been done on the mechanism
of thread level speculation. Data speculation can
be performed using speculative load [7] or data
value prediction [10], whereas control speculation
is based on various form of control flow predic-

† Graduate School of Information Science and Technol-
ogy, The University of Tokyo

tion.
This paper focuses on thread level control spec-

ulation to improve the performance of speculative
multithreading execution. We address the specu-
lation problem from two perspectives: improving
the prediction accuracy and reducing the specula-
tion miss penalty. We propose a combination of
hardware and software approach: a thread pre-
diction hardware assisted by static information
inserted by a compiler. The static information
is used to validate thread prediction at an ear-
lier stage and also to reduce capacity and conflict
misses of thread prediction table.

The remainder of this paper is organized as fol-
lows. Section 2 explains the thread level control
speculation mechanism in our architecture model,
and refer to how other proposed speculative mul-
tithreading models deal with inter-thread control
dependences. Section 3 presents our proposed
techniques. Section 4 evaluates the contribution
of the techniques to the overall performance and
discusses their trade-offs. Section 5 concludes the
paper.

2. Thread Level Control Speculation

2.1 Baseline Architecture
Throughout the paper, we assume a specula-

tive multithreading architecture described as fol-
lows. First, sequential programs are partitioned
into threads at compile time. A thread is defined
as a connected subgraph of a static control flow
graph with a single entry node. It may comprise
a basic block, multiple basic blocks, loop body,
or entire function. Most threads consist of 20-30
dynamic instructions [8].

Those threads are then executed in parallel on a

2

Secondary Cache

Thread Control Unit Thread Validation
and Retire UnitThread Predictor

PU 1

SS
Core

Reg.
Sync.
Unit

Controller and
Speculation support

DCacheICache DCacheICache

PU 4

SS
Core

Reg.
Sync.
Unit

Controller and
Speculation support

DCacheICache

Fig. 1 Baseline architecture

chip multiprocessor that integrates four process-
ing units on a single chip. Figure 1 illustrates the
organization. Register files and first-level caches
are distributed to each processing unit. For han-
dling inter-thread data-dependences, we assume
a register synchronization mechanism similar to
the one found in [2], and a memory speculation
mechanism similar to [7]. Inter-thread control de-
pendences are handled by a centralized thread
control unit. The unit includes a hardware we
call thread predictor, which predicts address of the
thread that should be executed next. The pro-
cessing units are logically organized in the form
of an one-directional ring. According to the sug-
gestion made by the thread predictor, the thread
control unit speculatively assigns a thread to the
tail of the ring of the processing units. If the pre-
diction fails, the thread control unit discards the
misspeculated threads and recovers execution.

2.2 Importance of Thread Prediction

The thread prediction mechanism has a great
impact on overall performance. Figure 2 shows
an example of thread level control speculation.
Let us consider the control flow graph shown in
figure 2 (a), where thread B and C are control de-
pendent on thread A. Which of the two threads
should be executed cannot be determined until
the last branch in thread A resolves. However,
in order to gain performance, the thread predic-
tor predicts which path will be taken so that the
threads can be speculatively executed in paral-
lel. In figure 2 (b), the predictor has successfully
predicted thread B to be executed. The three
threads are spawned successively after a short
thread starting overhead, and completed within
a minimum cycle time. On the other hand, fig-
ure 2 (c) shows a case in which the prediction
turned out to be a miss. After the last branch in
thread A resolved, the thread control unit is in-

formed that thread 3 should be executed instead
of thread B. Then the control unit flushes all the
successors of thread B, and restart execution of
thread C. It can be seen that a large number of
cycles are waisted by the execution of misspecu-
lated threads and the recovery of the execution
states.

This example shows that the performance of the
speculative multithreading execution is largely
improved when the thread prediction hits, but
suffers severely when the prediction misses. Thus,
it is important to design a speculation mechanism
that can maximize the thread prediction accuracy
and/or minimize the speculation miss penalty.

2.3 Related Work
Various models of speculative multithreading

have been previously proposed, each with differ-
ent ways of handling control dependences.

Some architectures do not allow inter-thread
control dependences. In SKY architecture,
threads are only forked at control equivalent
points [3]. This scheme avoids control misspecu-
lation and eliminates its penalty. However, it sac-
rifices chances to achieve more performance gain
in inherently parallel applications.

Multiscalar processor relies on thread level con-
trol speculation. A detail work has been done on
its mechanism [6]. Multiscalar uses both hard-
ware and software to achieve high thread predic-
tion accuracy. Software assistance comes in the
form of a thread header appended to each thread.
Compiler includes in the header the number and
type of the thread exit points, as well as addresses
of the next threads if they are known at com-
pile time. At runtime, a dedicated hardware pre-
dicts the control flow based on a similar scheme to
conventional branch predictors. First, it predicts
which exit of the current thread is most likely to
be taken, using a Pattern History Table (PHT).
Then, it predicts the address of the exit. The ad-
dress is either obtained from the thread header
or predicted using a Thread Target Buffer(TTB),
which is an extension of a Branch Target Buffer.
Although this approach is successful in achieving
high prediction accuracy, it does not consider the
possibility to achieve more performance by reduc-
ing prediction miss penalty.

3. Hardware/Software Approach

3.1 Concept
As already noted in the previous section, to im-

3

Thread
 A

Thread
 C

Thread
 D

Thread
 B

Thread
 A Thread

 B Thread
 D

tim
e

commit
commit

commit

spawn

spawn
Thread
 A Thread

 B Thread
 D

tim
e

spawn

spawn

Thread
 C Thread

 D

Mispredicted
 flush

Successors of
mispredicted
thread are
also flushed

New threads are
loaded & executed

(a) Control flow graph (b) Correct thread prediction (c)Thread misprediction

Fig. 2 Example of thread level control speculation

prove execution performance through thread level
control speculation, it is important to achieve
high prediction accuracy and low misspeculation
penalty. Since thread prediction can be seen as
an extension of branch prediction, it is possible to
apply a number of sophisticated branch predic-
tion mechanisms previously proposed. However,
these mechanisms are mainly designed only to in-
crease the accuracy of prediction. Alternatively,
we investigate a method that use compiler assis-
tance to reduce misspeculation penalty as well as
to improve prediction accuracy.

Our approach is to let the compiler perform
reachability analysis of the control flow graph and
provide a mechanism to inform the thread control
unit about thread reachability. Specifically, the
compiler marks points in the control flow graph
where a successor thread can be uniquely iden-
tified or where it becomes unreachable. Using
this information, the thread control unit may be
able to validate the prediction result at an earlier
stage. The early validation permits an early re-
covery from the misspeculated execution states,
leading to lower misprediction penalty.

It is also possible to use the thread reach-
ability information to increase the accuracy of
thread prediction. There are cases when a suc-
cessor thread can be uniquely determined stati-
cally. We define a thread whose successor thread
can be fixed before its execution begins as a fixed-
successor thread. If the compiler marks the fixed-
successor threads with appropriate information,
the thread control unit is able to obtain the cor-
rect address of a successor thread without using
the thread predictor, thus reducing the require-
ment for prediction table entries. It is expected
that it will lead to a reduced capacity and con-
flict misses of prediction table and an increased
overall prediction accuracy.

In the following subsections, the structure of

thread prediction hardware used in this research
is described. Then, the analysis method and
mechanism for early control speculation valida-
tion is explained. Finally, the mechanism for han-
dling fixed-successor threads is described.

3.2 Hardware Structure of Thread Predic-
tor

In this research we use a thread predictor whose
structure is shown in figure 3. Thread Target
Buffer (TTB) is a table that caches the starting
address of successor threads. The index for ac-
cessing the TTB is generated by applying a hash-
ing function on history registers. History reg-
isters record starting addresses of the most re-
cently executed threads. They are used to gener-
ate thread history pattern to exploit correlation
among threads to achieve better prediction accu-
racy.

History
Registers Hashing

Function

Thread
Target
Buffer
(TTB)

Index generation

Updating

Look-up
Next

Thread

Address

Fig. 3 Structure of thread predictor

To reduce conflict misses when accessing TTB,
the hashing function must also effectively en-
code the thread history pattern into a designated
length index. Here we adopt a hashing function
proposed by Multiscalar group [6]. Figure 4 il-
lustrates the index generation mechanism. First,
lower address bits of the History Registers are
concatenated to form an intermediate index. The

4

Concatenating

Folding

History Registers

Intermediate index

Final index

N-�

N-2

N-d

n1 bits

nd bits

Fig. 4 Index generation mechanism

final index is then constructed by folding the in-
termediate index. Folding is done by dividing the
intermediate index into several, identical length
subfields and then XORing those subfields.

3.3 Software Assisted Early Validation
This subsection explains how we implement the

concept of early control speculation validation us-
ing compiler assistance. After partitioning a pro-
gram into threads, the compiler does control flow
reachability analysis for each thread. The analy-
sis identifies points where a successor thread can
be uniquely determined, or where it becomes un-
reachable. The compiler then inserted assert and
reject instructions for the two cases respectively.
The assert and reject instructions carry a pointer
to a register that will hold starting address of a
successor thread.

Figure 5 illustrates how the compiler inserted
these instructions. Suppose there is a thread
which comprises six basic blocks (BB1∼BB6) as
shown in figure 5(a). It has four possible succes-
sors, thread A, thread B, thread C and thread D.
Using control flow reachability analysis, the com-
piler identifies points where only one of the four
threads is reachable and insert assert instructions.
Similarly, the compiler finds points where one or
more of the four threads become unreachable, and
insert reject instructions. Figure 5 shows where
those instructions will be inserted for the exam-
ple.

Assert instruction indicates that the control
flow will absolutely go to the designated succes-
sor thread. When a processing unit executing a
thread encounters an assert instruction, it noti-
fies the thread control unit and sends the ad-
dress of the successor thread. Thread control unit
then checks if the address of thread predicted ear-
lier matches the address notified by the process-
ing unit. If a mismatch occurs, the thread con-
trol unit knows it has mispredicted the successor

BB1
br1

BB3
br3

BB5

BB2
br2

Thread B
Thread C Thread D

BB6BB4

Thread A

ASSERT A ASSERT DASSERT C

REJECT C,D REJECT A,B

BB1
br1

BB3
br3

BB5

BB2
br2

Thread B
Thread C Thread D

BB6BB4

Thread A

(a)Thread Structure (b) Insertion of assert & reject

Fig. 5 Illustration of sofware assisted early validation

thread and can start the procedure to flush the
mispredicted thread and restart the execution of
a correct successor thread.

In contrast to assert instruction, a reject in-
struction indicates that there is no possibility that
the control flow will go to the designated succes-
sor thread. The notification mechanism is identi-
cal to the case of assert instruction. When the
thread control unit is notified by a processing
unit, it again does the address matching process.
In case of notification initiated by reject instruc-
tions, misprediction can be detected if the noti-
fied address matches the the predicted address.
If it is the case, the thread control can flush the
mispredicted thread, and optionally repredict and
restart an execution of another thread.

3.4 Fixed-Successor Thread
As noted previously, we defined a fixed-

successor thread as a thread that has only one
successor whose address can be statically deter-
mined. Fixed-successor threads can be identified
using the same reachability analysis explained in
the previous subsection. When the compiler can
assure that a thread may only have one succes-
sor, and the start address of the successor can
be determined statically, it marks the thread as
a fixed-successor thread. The compiler also in-
serts the starting address of the successor into the
thread’s header. The thread control unit will use
this address to start the correct successor thread.

Figure 6 illustrates the flow of the thread pre-
diction mechanism. First, the thread control unit
checks if the thread is marked as a fixed-successor
thread. In that case, the address of the successor
thread is obtained from the thread header. Oth-
erwise, it is predicted using the hardware predic-
tor.

By exploiting the characteristics of fixed-

5

Is

fixed-successor

Thread?

Predicted by
TTB

Next-thread address
is derived from
thread header

begin

end

No

Yes

Fig. 6 Flow of thread prediction

successor threads, we can eliminate the possibility
of mispredicting a successor of a fixed-successor
threads. In addition, since the fixed-successor
threads do not use entry in the TTB, it is also
expected that the accuracy of the thread predic-
tor can be further improved, resulting in more
performance gain.

4. Evaluation

4.1 Simulation Environment
We use a trace-based simulator that models a

4-PU (processing unit) CMP described in sec-
tion 2.1. The architecture configuration is sum-
marized in table 1.

Parameter Configuration

Pipeline stages 10
Arith/Logic units 4
Address units 2
Reorder buffer size 64
Load/Store queue size 20
Fetch/Decode/Rename/Retire width 4
L1 Instruction cache 32 kb - 2 cycles
L1 Data cache 32 kb - 2 cycles
L2 Unified cache ideal - 6 cycles
Inter PU register comm. 1 cycle
TTB no. of entries 2048
TTB history depth 4
TTB index folding 3 times

Table 1 Configuration parameters

We prepared four types of binaries of
SPECint95 benchmarks.
• BASE: no control flow information is added.
• FS: for each fixed-successor thread, its header

is marked and equipped with the address of
its successor thread.

• FS+ASSERT: in addition to fixed-successor
information, assert instructions are inserted
wherever possible.

• FS+ASSERT+REJECT: reject instruc-
tions are fully added.

The fixed-successor information and assert in-

structions are handled using the mechanism de-
scribed in section3. As for reject instructions, in
case a misprediction is detected due to a reject
notification, the thread predictor repredicts and
restarts a new successor thread. In order to evalu-
ate the potential of using reject information, here
we assume that the reprediction is always success-
ful.

4.2 Results
Figure 7 shows the normalized execution time

of SPECint95 programs. Binaries with fixed-
successor thread information resulted in better
performance for all programs, especially go, gcc
and vortex. The average speed-up was 3.3%.
Adding assert instructions gave further perfor-
mance improvements in most cases. For go and
vortex, the execution time was reduced by more
than 8.5%. However, the effect of assert instruc-
tions varied among applications. For example,
ijpeg and m88ksim required slightly longer execu-
tion time than in FS case. The reject instructions
did not contribute to the performance. Except
compress and go which showed limited improve-
ment, all the programs suffered degraded perfor-
mance. The execution time of perl was increased
by more than 50%.

The positive effect of the additional control flow
information comes from both early validation of
the thread prediction and higher prediction ac-
curacy. On the other hand, there is also a nega-
tive effect that comes from the increased number
of executed instructions. Those factors are dis-
cussed in detail below.

1.36

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

compress gcc go ijpeg li m88ksim perl vortex

N
o
rm
a
li
z
e
d
 e
x
e
c
u
ti
o
n
 t
im
e

BASE

FS

FS+ASSERT

FS+ASSERT+REJECT

Fig. 7 Normalized execution time of eight SPECint95
programs

Prediction hit-rate. We found that, on aver-
age, 28.4% of executed threads are fixed-successor
threads. Since the fixed-successor threads do not
occupy entries in TTB, the thread predictor can
achieve higher prediction accuracy. We verified

6

that average hit-rate of FS set was 2.8% higher
compared to that of BASE binaries. The hit-
rate improvement was considerable for go, gcc
and vortex, whose control flow is relatively less
predictable. This explains the outstanding per-
formance improvement of those programs that we
have observed in figure7.

Number of retired instructions. The
number of retired instructions is shown in fig-
ure 8. Checking whether a thread is a fixed-
successor thread is done by consulting the thread
header.Therefore, BASE and FS binaries show
the same number of retired instructions. Adding
assert and reject information increased the num-
ber of instructions by 5.7% and 8.1%, respec-
tively. In case of assert information, for most
programs, the benefit of early misprediction vali-
dation was larger than the extra overheads due to
the increased number of instructions. However,
the reverse was true for reject information. Es-
pecially for perl, the number of instructions was
increased by 44%, resulting in severe slowdown in
performance as shown in figure 7.

1.48

0.95

1

1.05

1.1

1.15

1.2

compress gcc go ijpeg li m88ksim perl vortex

N
u
m

b
e
r

o
f

re
ti
re

d

in
s
tr

u
c
ti
o
n
s
 (

n
o
rm

a
li
z
e
d
) BASE

FS

FS+ASSERT

FS+ASSERT+REJECT

Fig. 8 Number of retired instructions (normalized)

5. Conclusion

This paper explored an approach of combin-
ing hardware and software to provide a better
thread level control speculation. The approach is
to let the compiler insert thread reachability in-
formation into the binaries. We introduced three
types of information: fixed-successor, assert and
reject. Using this information, the validation of
the thread prediction can be initiated earlier, re-
ducing the penalty when a misprediction occurs.
Moreover, fixed-successor information is also use-
ful for achieving higher prediction accuracy.

Our evaluation results showed that using fixed-
successor information alone reduced the execu-
tion time by an average of 3.3%. Adding assert

information reduced the execution time further
by 3.7%. However, the gain achieved by inserting
reject information was cancelled by the increased
number of executed instructions.

More work is needed to improve the effective-
ness of early misprediction validation. Currently,
assert or reject instructions are inserted wherever
possible. A smarter approach that inserts infor-
mation only where a substantial gain is expected,
might result in a better performance.

Acknowledgement

This research is partially supported by Semi-
conductor Technology Academic Research Center
(STARC) Japan, under project name Research
on Next Generation Low-power Chip Multipro-
cessors.

References

[1] David W. Wall, Limits of Instruction Level
Parallelism, Proceedings of the 4th ASPLOS,
pp.176-188, Apr. 1991

[2] Gurindar S. Sohi, Scott E. Breach, and T. N.
Vijaykumar, Multiscalar Processors, Proceedings
of the 22nd ISCA, pp.414-425, Jun. 1995

[3] 小林 良太郎, 岩田 充晃, 安藤 秀樹, 島田 俊夫, 非数
値計算プログラムのスレッド間命令レベル並列を利用
するプロセッサ・アーキテクチャ SKY, 並列処理シン
ポジウム JSPP98, pp.87-94, Jun. 1998

[4] Venkata Krishnan, Josep Torellas, A Chip-
Multiprocessor Architecture with Speculative Mul-
tithreading, IEEE Transactions on Computers,
Vol. 48, No. 9, Sep. 1999

[5] Simonjit Dutta, Manoj Franklin, Control Flow
Prediction Schemes for Wide- Issue Superscalar
Processor, IEEE Transactions on Parallel and
Distributed System, Vol 10, No.4, Apr. 1999

[6] Quinn Jacobson, Steve Bennett, Nikhil Sharma,
J.E. Smith, Control Flow Speculation on Multi-
scalar Processors, Proceedings of the 3rd HPCA,
pp.218-229, Feb. 1997

[7] Lance Hammond, Benedict A.Hubbert, Michael
Siu, Manokar K.Prabhu, Michael Chen, Kunle
Olukotun, The Stanford Hydra CMP, IEEE Mi-
cro, pp.71-84, Dec. 2000

[8] Niko D. Barli, Hiroshi Mine, Shuichi Sakai, and
Hidehiko Tanaka, A Thread Partitioning Algo-
rithm using Structural Analysis, 情報処理学会 計算
機アーキテクチャ研究会, ARC-2000-139 Vol. 2000,
No. 24, pp.37-42, Aug 2000

[9] Haitham Akkary, Michael A. Driscoll, A Dy-
namic Multithreading Architecture, Proceedings
of the 31st MICRO, pp.226-236, Nov. 1998

[10] Pedro Marcuello, Jordi Tubella, Antonio Gonza-
lez, Value Prediction of Speculative Multithreaded
Architecture, Proceedings of the 32nd MICRO,
pp.230-237, Nov. 1999

