TECHNICAL REPORT

TRIE-91-7

Application of Boolean Unification to

Combinational Logic Synthesis

Yuji Kukimoto and Masahiro Fujita

/////

Information Engineering
The University of Tokyo

TRIE-91-7

Application of Boolean Unification to

Combinational Logic Synthesis

Yuji Kukimoto and Masahiro Fujita

Information Engineering
The University of Tokyo

Application of Boolean Unification to
Combinational Logic Synthesis *

Yuji Kukimoto Masahiro Fujita
University of Tokyo FUJITSU LABORATORIES LTD.

October 1, 1991

Abstract

Boolean unification is an algorithm to obtain the general solution of a given
Boolean equation. Since the general solution provides a way to represent com-
plete don’t care sets in a functional form, Boolean unification can be a power-
ful method when applied to logic synthesis. In this paper we present various
applications of Boolean unification to combinational logic synthesis. Three
topics of combinational logic synthesis: redesign, multi-level logic minimiza-
tion and minimization of Boolean relations are discussed. All these problems
can be uniformly formalized as Boolean unification problems. Experimental
results are also reported.

*To appear in Proceedings of IEEE International Conference on Computer-Aided Design, Santa
Clara, November 1991

1 Introduction

Boolean Unification[9, 8] is a procedure to obtain the general solution of a given
Boolean equation or formula. In the field of CAD for integrated circuit design, it
has been applied to logic verification and test pattern generation [11, 4] combined
with logic programming.

In this paper we present various applications of Boolean unification to combina-
tional logic synthesis. Three topics: redesign [5], multi-level logic minimization and
minimization of Boolean relations [12] are discussed. All these problems can be uni-
formly formalized as Boolean unification problems. The general solutions of these
problems can be obtained by using Boolean unification algorithms [9, 8]. These
solutions express complete don’t cares, which enable us to explore larger design
space. :

In section 2, we briefly review a Boolean unification problem and its algorithm and
show that the algorithm can be easily implemented by Binary Decision Diagrams (3].
In section 3, we present three applications of Boolean unification to combinational
logic synthesis and show how to formalize them in a unified framework. A method
to synthesize circuits from the general solutions of Boolean unification is given in
section 4. In section 5, an implementation of the unification algorithm and experi-
mental results are discussed. Section 6 gives concluding remarks.

2 Boolean Unification

2.1 Problem Formulation

In this section, we present a Boolean unification problem and its algorithm. Detailed
explanations can be found in [9, 8]. In this manuscript, the complement of a formula
is expressed with / (prime), i.e. p’ represents the complement of p. @ denotes an
exclusive-or operation.

Boolean unification is a problem to find the most general unifier (or substitution)

for py,pa, ..., p. which satisfies the following equation no matter what functions or
variables ¢, s, ..., qm are.

f(plap%-'-apnaq1aq2""sqm) =0 (1)
In general, a most general unifier can be represented by functions of ¢1,42,. .., ¢m,

and some newly introduced variables, ry,ry, ..., r,, i.e.,

Pi = mgul(ql,q?,"',an7r19T2?"'9rn)
(2)
Pn = mgun(quq%"'vqmle?r?a"-3rn)
Variables r;’s can be arbitrary functions of ¢y, ¢2,...,¢n or simply constants. In

other words, Boolean unification translates a relation expressed in equation(1) into

unity(F(p)){
if (p = ()) then {
if (f(p) = 0) then return () else fail
}

else {
G(y) = wnify(f(0,y) - f(1,¥))

return(
) ((f(0,Gy) @ f(1,G(y)) @ 1) -m1 @ f(0,G(y)), G(¥))
}
}

Note: p= (pl,p%-",pn),y = (p2a"'7pn)

Figure 1: Boole’s unification algorithm for f(p) =0

the corresponding functional description in (2) by introducing new variables r;’s for
representing don’t cares.
For example, suppose we unify the following formula.

f(P1,p2, 01, 02) =PL O P, BPIP, B D=0 (3)

Most general unifiers for p; and p, are:

Pl = qrimy®@ernr@a®e®l (4)
P2 = qr:PD 2@ o1

The equation (3) is always satisfied no matter what functions r; and r; are in (4).
(The unification procedure is discussed in the following section). To get a particular
solution, we have only to assign some functions of ¢, g, (or constant) to r; and r,.
If we assign ¢; to r; and ¢, to ry, we get:

P= QOGP eah®a®edl=qg+q¢
P2 = 0P ®e®l=q+q

2.2 Boolean Unification Algorithm

There are two major Boolean unification algorithms: Boole’s method and
Lowenheim’s method [9, 8]. Here we introduce only Boole’s method because of
space limitation.

Boole’s method is based on Shannon’s expansion of a given formula, and recursively
applies the unification procedure to its sub-formulas. The unification procedure is
shown in figure 1. It first checks whether there remains a variable to be unified in
the formula. If there is no such variable, the formula is checked to be 0. If it is 0, the
unification succeeds and returns, otherwise it fails, i.e. there is no solution for the

given formula. If there are remaining variables to be unified, one variable is selected
from these as a splitting variable (in figure 1, the first variable, p,, is selected) and
the unification is applied recursively to a new formula f(0,y) - f(1,y). The most
general unifier for the splitting variable can be obtained as follows, where G(y) is
the result of the unification of the sub-formula f(0,y) - f(1,y).

p1=(f(0,G(y)) @ f(1,G(y)) @ 1) - m1 @ f(0,G(y))

Since each operation in figure 1 is a logic operation, we can easily implement the
unification procedure using BDD’s.

3 Application of Boolean Unification

3.1 Redesign

A redesign problem [5] arises when we encounter a slight change of specification. In
this situation we should use an existing circuit as a part of a new circuit. To attach
an extra circuitry to the original circuit is promising in this context. Here we show
how to formalize this redesign problem with Boolean unification. We assume that
an existing circuit has a physical design, where only external inputs and outputs of
the circuit can be connected from the outside. We also assume that some internal
nets connected to the boundary of the layout can be reached from the outside of the
circuit. To compensate for the difference between the existing design and the new
specification, we attach an extra circuit to these easily accessible terminals or nets,
as shown in figure 2. '

Now we explain formalization methods. In the following, let f be the logic function
realized by an existing circuit, i.e., 0 = f(7), (i, o, and ¢ are inputs, outputs, and
intermediate variables respectively. These can be vectors of variables) and s be the
logic function for the specification: the one which must be realized by the redesigned
circuit.

When we attach an extra circuit to the input part of the existing circuit, as shown
in figure 2(a), the problem to be solved is:

o= f(t,i) = s(¢) (5)

(5) can be transformed to the normal form of (1),

ft,) @ s(z) =0

where ¢t and 7 correspond to p;’s and ¢;’s in (1) respectively. As a result of Boolean

unification, ¢ expresses requirements for the extra circuit in the most general form.
In the case where an extra circuit is attached to the output part of the existing

circuit, as shown in figure 2(b), we have to find a logic function o such that:

(0= s(i))(t = £(5)) = 1

- Extra Existing circuit | _
circuit

(a) Add an extra circuit to an input part

i
— Existing circuit t Extra _3,

circuit
/

(b) Add an extra circuit to an output part

i t1 e e 2 o
—»f Extra Existing circuit Extra |
circuit : circuit

t3
i i
— Extra
i circuit

(c) Combination of various types of redesign

Figure 2: Redesign after layout

When we can access some internal nets, a similar formalization is possible. Clearly
the combination of these redesign methods(cf. figure 2(c)) can be formalized in the
- same way, which enables us to solve any types of redesign problems.

When we get a general solution for the extra circuit, the remaining thing to do is
to synthesize the circuit from it. This is discussed in section 4.

We can effectively apply the proposed redesign techniques to logic synthesis where
a part of the internal structure of a circuit to be synthesized is determined in advance
by a designer. For example, it is well known that one can design a compact adder
using a carry-chain composed of pass transistors. Figure 3 shows a one-bit slice
adder, where qi, g2, and g3 are inputs; s; and s; are a carry output and an internal
signal; p; and p, are the outputs of circuitl and 2 respectively. In this case, a
designer has already determined to use this structure and the remaining task is to
design the circuitl and 2. We can apply the redesign method to this problem in the
following manner. First we specify the circuit to be designed in its logic operation

Vdd

s1’(carry out)

| p2[4t
_.._qz

circuit2

a3

o]

circuit1

Gnd

e

Figure 4: Multi-level Logic Minimization

phase(CK=1) by its characteristic function.

(s1 = 10293 + 419293 + (19593 + q19293)(pr — s = 0)
(p2 — 3’1 = 32)(q3 — §9 = 0) =1 (6)

where p; and p, are variables to be unified. After smoothing out the variables s,
and s, from (6), we can apply the unification procedure to the formula and get the
general solutions for p; and p, in terms of ¢, ¢2, and ¢3. Using a synthesis method
presented in section 4, we can synthesize circuitl and 2 from these general solutions:
in this case an AND gate for the circuitl and an EXOR gate for the circuit2.

3.2 Multi-level Logic Minimization

A general solution of a given equation obtained by Boolean unification can rep-
resent don’t care sets in much broader sense than those proposed so far [10, 2, 1].
Don’t care sets used in logic synthesis methods in [10, 2, 1] are basically defined for
a single net or gate, and only one logic function corresponding to a net can be mod-
ified at the same time during the minimization process. (CSPF [10] is an exception,

6

but it is a very limited don’t care set). For example, MSPF [10] is defined for each
net on condition that the logic functions of all other nets do not change.

However, we can modify circuit structures much more dramatically if we use don’t
care sets derived from the condition that the logic functions of more than one net
or gate are changed simultaneously, which leads us to a better minimization result.
For example, as shown in figure 4, if we allow the logic functions of x and y to
change simultaneously on condition that the logic functions of all other nodes do
not change, the derived don’t care sets for x and y capture higher degrees of freedom
for optimizing a given network.

Boolean unification provides a way to handle these don’t care sets uniformly. In
the case of figure 4, we first represent the output logic function of the circuit in
terms of inputs and also x and y. (s is a logic function for specification):

0= f(‘rayai) = S(Z)

By corresponding z, y and i to p;, p, and ¢, in equation (1) respectively, we can
apply Boolean unification to obtain the general solutions for z and y. The general
solutions for z and y are logic functions in terms of and newly introduced variables
ry and r,. These variables r; and r, express complete don’t care sets for z and
y and the relationship between the don’t care set of z and that of y. Based on
this don’t care set, we can transform the circuit structure on condition that the
logic functions for = and y after the transformation remain in the general solutions
of Boolean unification. Note that if only one node z is considered instead of two
nodes, the general solution expresses the same don’t care set as MSPF for the net
z.

3.3 Boolean Relation

Boolean relations are the generalizations of incompletely specified functions and
arise in many applications [12]. There are several approaches to the minimization of
Boolean relations in sum-of-product forms [12, 6, 13], but no methods for multi-level
minimization of Boolean relations have been published so far. Here we present how
" to apply Boolean unification to the multi-level minimization of Boolean relations.
Since a Boolean relation is a relation between inputs and outputs, we can represent
it with its characteristic function:

f(01a02, "',On)ihi% "-aim) =1 (7)

In (7) o; and %; correspond to p; and ¢; in (1) respectively. If we apply Boolean
unification to this formula, we can get the general solution for primary outputs o;’s
as functions of both inputs and newly introduced variables. This solution completely
expresses the don’t care set of the original Boolean relation. Since we can represent
compatible outputs as functional forms not as relational, it is easy to apply multi-
level logic minimization methods proposed so far.

0 ©
/] 4
ol

(a) BDD for = (b)BDD for y

1

Figure 5: BDD for equation (8)

4 Logic Synthesis from the Results of Boolean
Unification

In this section, we consider logic synthesis from the results of Boolean unification.
Suppose we get the following general solution after Boolean unification. (@ and b
are inputs, z and y are outputs, and ¢ is a newly introduced variable):

x = a+bt

y = ab+a't (8)

The remaining task is to generate a simple circuit from the general solution of (8).
We take the following two steps:

1. Generate an initial circuit by appropriately assigning constants to newly in-
troduced variables.

2. Minimize the initial circuit.

Let us apply the above method to (8). Since we implement the unification proce-
dure by BDD’s, the first step uses the number of nodes in BDD’s as a measure for
the complexity of logic functions. Figure 5 shows BDD’s for (8). We order newly
introduced variables first so that we can see how large the number of nodes below
those variables is. By counting the number of nodes below the nodes of the variable
t, we can get the complexity of the logic functions when we assign constant values
to ¢. In this case, if we assign 0 to t, the total number of nodes below ¢ is 8, and
if we assign 1 to ¢, it is 7. Thus the latter substitution is expected to give a more
efficient result.

literals | CPU time(sec)
rd53-73 5 0.99

Table 1: Redesign

GYOCRO + MIS BU + MIS
literals(fac/sop) | literals] CPU time(sec)
int3 13/19 12/15 0.03
int9 26/30 23/27 0.26
int15 437/588 447/560 700.5
gr 270/300 371/447 113.7
b9 162/284 163/278 ’ 5.69
vix 130/2780 67/85 12.66

Table 2: Minimization of Boolean Relations

However, this is not the simplest solution, i.e., if we assign b to ¢, we get:

Tr =
y = b

This shows that the quality of the initial circuit is restricted if the substitutions to
newly introduced variables are limited to constants. To exploit don’t care sets of
Boolean unification completely, minimization of the initial circuit is essential. An
extended transduction method is a promising procedure for this purpose, where the
general solutions of Boolean unification are used as permissible functions [10]. The
_details can be found in a forthcoming paper.

5 Implementation and Results

We have implemented Boole’s method using shared BDD’s with negative edges
[7] on Sparc station 2. As the variable ordering of BDD’s, we select variables; to
be unified(p;) first followed by non-unified variables(g;). A case splitting varlable
in figure 1 is selected in the same order as the variable ordering of BDD’s., The
synthesis method shown in the previous section has been also lmplemented usmg
BDD’s.

Experimental results for redesign are summarized in table 1. We assume that we
have a circuit rd73 as an existing circuit, which is rectified to function as rd53 by
attaching an extra circuit to the input part of the circuit.

Table 2 shows experimental results on multi-level minimization of Boolean rela-
tions. An initial circuit is obtained from a general solution by substituting appro-
priate single literals or constants to newly introduced variables and minimized with

9

MIS2.2 standard script. These are compared with the minimization results of heuris-
tic minimizer GYOCRO [13]. The two-level minimization results of GYOCRO are
processed with MIS2.2 standard script to get multi-level circuits.

The CPU time on these two tables consists of the processing time for Boolean
unification and that for selecting good substitutions to new variables. Most of the
time is spent on the latter computation.

6 Conclusion

We have shown that Boolean unification gives powerful methods for various problems
in combinational logic synthesis, and also presented some experimental results using
BDD’s. We are now working on constructing a more general logic synthesis method
from the results of Boolean unification, and on the application of Boolean unification
to sequential logic synthesis.

Acknowledgment

The authors are grateful to Mr. Y. Watanabe of UC Berkeley for providing us
Boolean relation benchmarks and his minimization results.

References

(1] D. Bostick, G. D. Hachtel, R. Jacoby, M. R. Lightner, P. Moceyunas, C. R.
Morrison, and D. Ravenscroft. Boulder optimal logic design system. In Pro-
ceedings of IEEE International Conference on Computer-Aided Design, pages
62-65, November 1987.

[2] R. K. Brayton, R. Rudell, A. L. Sangiovanni-Vincentelli, and A. R. Wang. MIS:
A multiple-level interactive logic optimization system. IEEE Transactions on
Computer-Aided Design, 6(6):1062-1081, November 1987.

[3] ,Randal E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEFE Transactions on Computer, C-35(8):677-691, August 1986.

4] W. Buttner and H. Simonis. Embedding boolean expressions into logic pro-
g p g
gramming. Journal of Symbolic Computation, 4:191-205, 1987.

[5] M. Fujita, T. Kakuda, and Y. Matsunaga. Redesign and automatic error cor-
rection of combinational circuits. In Proceedings of IFIP Working Conference
on Logic and Architectural Synthesis, pages —, May 1990.

[6] A. Ghosh, S. Devadas, and A. R. Newton. Heuristic minimization of boolean
relations using testing techniques. In Proceedings of IEEE International Con-
ference on Computer Design, pages 277-281, September 1990.

[7] Shin-ichi Minato, Nagisa Ishiura, and Shuzo Yajima. Shared binary decision
diagrams with attributed edges for efficient boolean function manipulation. In

10

[9]

[10]

[11]

[12]

[13]

Proceedings of 27th ACM/IEEE Design Automation Conference, pages 52-57,
June 1990.

Ursula Martin and Tobias Nipkow. Unification in boolean rings. Journal of
Automated Reasoning, 4:381-396, 1988.

Ursula Martin and Tobias Nipkow. Boolean unification — the story so far.
Journal of Symbolic Computation, 7:275-293, 1989.

S. Muroga, Y. Kambayashi, H. C. Lai, and J. N. Culliney. The transduction
method - design of logic network based on permissible functions. IEEE Trans-
actions on Computer, 38(10):1404-1424, October 1989.

H. Simonis. Test generation using the constraint logic programming language
CHIP. In Proceedings of 6th International Conference on Logic Programming,
pages —, June 1989.

F. Somenzi and R. K. Brayton. An exact minimizer for boolean relations.
In Proceedings of IEEFE International Conference on Computer-Aided Design,
pages 316-319, November 1989.

Y. Watanabe and R. K. Brayton. Heuristic minimization of boolean relations.
In Proceedings of MCNC International Workshop on Logic Synthests, May 1991.

11

Information Engineering Course
Graduates School of Engineering
The University of Tokyo

7-3-1, Hongo, Bunkyo-ku, Tokyo 113
JAPAN

the cover designed by Jun-ichi Tatemura, march 1990

