An Algebraic Deductive Database Managing a Mass of

"Rule Clauses

Tadashi OHMORI and Hidehiko TANAKA
University Of Tokyo, Information Engineering Course

Abstracf ’4

This paper Proposes a deductive database which manages a mass of rule-
clauses in a disk as well as many fact-clauses in a disk. For this purpose, we
Propose a variant of relational algebra, Rclational Algebra extended with Unifi-

.

Conventional deductive databases concentrate on fast retrieval of many fact-clauses
in a disk through a few rule-clauses in a main memory [’KHTSG,BO&SG‘,YSISG]; ‘

o Practica.l’a‘pplications, however, will need a DBMS which manages a mass of rule-
clauses stored in a disk as well as many fact-clauses in a disk. R '

" This paper proposes such a deductive database. This DBMS, which'we call a rule-
DBMS, must retrieve rule-clauses fast'from a disk, execute ‘them fast, and retrieve
fact-clauses fast from a disk.) '

Our approach is simple; A mass of rule-clauses: are'managed as a set called ‘a
_meta-relation. Each query to a rule-DBMS is described as a tree form of set-operators
defined on meta-relatjons. o R A LR Y L

Those set-operators, which we call R4 U, are a variant of relational algebra for
‘dealing with unification. RBU-operations in [YI86] is the first that extends relational
‘algebra for unification. Our RAU is, however, aimed at a faster query-processing in
a large scale rule-DBMS. P B B o
""" The rest of the Paper is organized as follows; Section 2 illustrates a large database
‘of rule-clauses, and describes requirements for a rule-DBMS. Section 3 gives our

2.1 Preparatiopfs' ’

‘Deductive databases in this paper allow functor symbols as in (Zan85]. A rule-clause is
' abbreviated as a rule and a fact-clause as a Jact. We use usual notations in PROLOG.
We restrict each rule to a non-recursive view definition. Hence it can be compiled

- 291 -

% store(Media, Type Data) = Cond.
oAb store(imagedb(T), image(subl A), D):- ql(T, A D).
10 store(textdb(sub2(T)),
rules| : ; text(£(b,F),A) , D):- qg2(T,F,A,D).
% key(Type Keyword User):- Cond.

4 key(text(F,h(A,b)), K, japan(ic,X)):- pl(F A,K X)
10 "key(image(S,g(A)), story(K),
rulcs japan(pie tokyo(X))):- p2(s, A K, x)
% query -

q(T D):~- ruledb(kbl, key(T story(aaa), japan(P,X)), Cl),
ruledb(kb2, store(M, T, D), C2),
demo(to, (Cl C2)). - .

.
.
.

vFigure~1: an example-of rule database

into an expressxon of a modlﬁed relatlona.l algebra such as ERA in [Zan8,5] Recursive
views are discussed later in Section'6.

In general, deductive databases have two databases; a database of facts (factDB)
and the other one of rules (ruleDB). We assume that those two databases are so
large that both of them are stored in a disk. Let’s call this DBMS a rule-DBMS. A
factDB is managed by a relational database system; facts with a common predlca.te
are regarded as.tuples of a usualirelation.

We use two meta-predicates ruledb and demo.in [Bow81] for managing a ruleDB.
ruledb(KB, Head, Body) says “a: knowledgeba,se KB knows a rule Head:-Body ”
demo(T,Goal) says “ a theory T proves Goal ”. In this paper, we say that a head-
predicate of a given rule is the rule s kmd and the rule belongs to or ezpresses its
kind. e.g. p(a X):-q(X). and p(f(x) b): —r(X) belong to one common kind p.

2.2 Large rule database

In practical applications, two cases enlarge a ruleDB; either there are many kinds of
rules, or many rules belong to one kind.

The la,tter case corresponds to “many dlfferent 1mplementatxons for a common
v lnterface” In an obJect orlented paradxgm it is the case that a superclass C requires
a common interface p and allows each subclass of C to lmplement p independently.
‘With 104 subclasses, 104 rules belong to a kind p. We expect this large scala.bxhty will
arise naturally when developmg a database of “a mass of heterogeneous data with
common mterfaces Possxbly, each rule may be 1mplemented by a simple. relatlonal
Aa.lgebra. program such as a smgle selectlon or at most one large Slze join.

Figure 1 is an, example of the latter case.. store(Medla, ‘Type, Data) is a com-
mon interface of a class Media. It says “a Data with a Type is stored in a Media.”
In Figure 1, subclasses and attributes’ values in Media, User.., are expressed by
compound terms. e.g. User has a structure of nation(group, czty(:d))

Suppose that each rule expressing store operates diflerent relatxons dxfferently,
depending on a subclass of Media (e.g. image-database subtypel,.. .), and a Type of
Data (image, text, format,:.). Then, with 102 subclasses of Media and 102 Types-of
Data, 10‘l rules expreSs the kind store. s

— 292 —

¥
_ “In the same way, key(Type, Keyword, User) is a common interface of a class
Type of data. It says “a Type of data is indexed with a Keyword by a User.”. De-
. pending on 10? Types ol' data and 10'2 propertxes of a User, 104 dlﬁ'erent rn]es belong
to key
- Most of ‘queries are issued v;a only those common interfaces regardless of dif-
. ferent implementations. eg. a query Q1 is given as follows, “q(T, D) - key(T
story(aaa), japan(P,X)), store(M, T, D).”. '

~ ‘Assume that only 100 ¢combinations of rules expressmg’ “key and store are nec—
essary for this query Q1, though the ruleDB has 104 rules for either “key” or “Store”.
Then, we should decide those combinations of rules at first before executing rules, in
order to restrict rules and redoce useless facts-retrieval.

The above situation will often happen when we have a mass of heterogeneous data
with a few common interfaces. Because more constraints will arise in this case. e.g.
this subclass of media stores only this type of data by this group. of users. - The query
in Figure 1 describes those above operations of Ql by meta-predicates. In the query,
“to” is a object-theory in’ [Bow81] “(ct, C2)” refers to- “C1 and C2”. The query
retrieves applicable combinations of rules,at first, and executg them. L

2.3 Requirements L

| It ‘needs two pomts for fast executlon of the query in Fjgure 1. .

‘ (a) fast retneva.l ‘of n;acessary combmatxons of rules. It is lmportant espec;ally
When many. rules belong to one. kmd We thmk tlus functlon is the most, 1mportant
fora la.rge ruleDB. (b) to a.voxd ra.ndom accesses to a ruleDB in a disk when executing
rules; e.g. Executing a rule p:-q. calls another rule q:-r, wluch ‘may be stored in
a.nother page of a disk.

) “A limited solutlon of (b) is a pa.rtxa.l compllatlon, transformatlon of each rule to
‘sxmpler ones which operate a factDB directly [Miy86]. e.g. arule p:-q. is trans-
formed into 100 rules p:- r; ,...p:- T100. if we have g:- ri (i=1, -.100).. (Possibly
'each ri may be a relatlonal algebra program for the factDB.). Thls transformation
makes more rules belong to one kind as shown above. Thus the requirement (a) gets
" more fundamental for a fast query-processing in a large.scale rule-DBMS Note that
(a) and (b) are caused only because a ruleDB is so large.
"~ Other requl ‘ments arise from a fa,st retneval of lacts through execu ng rules.
(c) to select an appropna.te ‘evaluation- -strategy or capture rule [U1185] for reducmg
irrelevant facts. (d) common subexpression sharing [Sel86]. These two are, also
mherent problems for conventlona.l deductlve databa,ses

2. 4 Conventlonal studles

Conventional deductive databases are based on a topdown or bottom -up approach
[Ull85] Recently, both prepare a gra,ph of given rules in"advance.” In orthodox
‘studies based on the topdown approach;a gwen query is‘transformed ifito a relational
“a.lgebra. program so-called plan'and executed in a relational’ database [Boc86,YSI86],
{Rei78,GM78]. - Studies based on bottom- -up 'pick up a partition of graph-of-rules
‘corresponding to a given query, optimize the graph; and ‘execute it by a ‘relational
algebra engine [KHT86,Zan85] or a data-flow framework [KL86,Gel86]. :

— 293 —

Both conventional studres are naive in terms of the Tequirement (a) only because
they don’t assume a large ruleDB. They process (a) by one rule at a time and don’t
process this large scalability efficiently.

-In topdown-based ones, plans are generated by selectmg one rule at a t:me In
bottom-up based ones, the picked-up graph is optimized by one rule at a time be-
fore/during execution. Therefore in the example of Section 2.3, it takes 108 processing
to decide only 100 applicable combinations of rules for the query.

~ On the other hand, conventional studies satisfy the requirements (c), (d) to some
extent. Hence it is hopeful to develop dexterous mechanisms for (a) which is consistent
with conventrona] techniques for (c), (d).

3 Algebraic approach
3.1 Basic ideas

We propose an algebraic approach for a large rule-DBMS as follows,

At first, we compile in advance each rule into simpler rules which operate the
factDB drrectly They can be expressed by a variant of relational algebra such as
ERA. The variant must be able to deal with functor symbols.

Second, we make a set of rules expressing one common kind. In Figure 2,
R[A,B,C] or T[A,D] is a set of rules “r(A4,B):- C.7 or “t(A):- D.” respec-
tively. We call these sets of ru]es meta- relatzons e. g In the ﬁgure, the scheme
T[A D] of a. ‘meta-relation T is deprcted over a horlzontal bar, and a tuple (X, q(X)
is under it. Correspondmg to the mterpretatlon of the scheme T[A D], this tuple
refers to a rule “t(X) ;- q(x)” Ina large ruleDB each meta.-reIa.tron will have many
tuples; ¢.g. 104 tuples.

Third, we prepare four set-operators R, 0,1, 7 on those sets as follows; Their exam-

‘ples arein Frgure 2. (R T are meta—rela,tlons a,nd A B, C D,...are attnbute-na,mes)

“ ‘e R 551 T wrth a scheme [4, B, c, D] is a set of rules “q(4, B):- c,D.”. These
‘ rules are deﬁned by “g(A B):- r(A B) t(A) ”, It expresses “r a.nd t” :

° 0u T[A D] with a scheme [A D] retrieves a set of rules q(A) - D.”

AS f(X)
- This kind “q" is deﬁned by “q(A) :'—t(A) A *f (X) " It expresses t whose

’ va.lue m the a.ttnbute T[A] is restncted to be umﬁed w1th “f (X)”

e lp T[A, D] is a set of facts satxsfymg a rule expressmg t

o ma,c) R[A, B,C] with a scheme [A C] is a set of rules “q(A) - C’ deﬁned by
“q(A):- r(A, B).”. Those rules express r wluch is restncted to the attribute
R[A] excluding R[B).

Thes,e.opera.tors are ca.lled Relational Algebra eztended with Unification (RAU).

Fourth, we express queries to a rule-DBMS as tree forms of those operators. e.g.
Let a query @ be “retrieve a set of facts satisfying both a rule expressing r restricted
by F1 and a rule expressing t restricted by F2.” It is expressed as follows; Q@ =
71[(oF1R) R (oF, T)). This query-tree descnbes what rules to be retrieved and when
to execute them. S :

— 294 —

i

R[A,B,C] : a set of rules 1(A,B):-'C. T [A, ‘D] t'a set of rules t(A):-D.
(R,T : meta-relations. A, B, C, D : attribute)

this tuple is R[IA B this tuple is T[A D]
"T(f(X),a):- p(X)" (X)) a pX) "= qx)." TR X qx)

s projection « selection
R=[A_C] e

X R= 1A D1
[A,C] £(X) pX)

Al f(X)T= f(X) q(f(X))

. B4 v - instantiation N
' A D where
RIS T=LA_B C D] IDT-I—*—'—I X
> f(X) a pX) q(f(X)) a q(a) q(a) is true.

Figure 2: an example of meta-relations

Fifth, aftvér' optimizing the query-tree, we execute each operator, éspecia.lly [

o Emd I-operator by a fast set-operation algorithm. Note that I-operator execute a

set of (modified) relational algebra programs on the factDB. We execute I-operator
by a relational database system, after global query optimizations such as common
subexpression sharings. O : L B P T C O NSRS,

. Our approach satisfies the requirements (a), (b), and partly (c) and (d) in Sec-.
tion 2; (a) is satisfied by fast executions of RAU-operators; esp‘,eCiaﬂy'ﬁl‘bpe_rztOr as
.described later in Section 5. So is (b) by exhaustive compilations. (c) is satisfied at
a “macro level”. j.e. a query including I-operator is transformed as follows; I(R X T)
=I((IR) & T)=1IR R IT. They correspond to topdown, sideway, and bottom-up
strategies at a “macro level” respectively. ‘) ‘ 7

(c) at a “micro level” refers to changes of strategies in executing each compiled
form of rules. This function and (d) should be supported when implementing I-
operator. Apparently I-operator is a function of conventional deductive databases.

Till Section 6, we concentrate on the requirement (a)in our approach.

3.2 Méta-relatioxl ’

This section defines a meta-relation by using a meta-theory [Bow81].

Definition 1 Let p(argi,.., argn) be a predicate in a meta-theory T wrtan object-
theory T,. A meta-relation rel(p) is defined as follows.

* A scheme of rel(p) is [argl,...,argn], where each argi is an a;tti'ibute, ‘A domain
of each attribute is a set of compound terms of Tm. S

. A tuple satisfying the scheme is a function from each attribute to each domain
. in the scheme. : : ~ : :

* A meta-relation rel(p) is a set of non-redundant tuples satisfying its scheme.

— 295 —

(Al, A2,-B1, B2 : atribute)

hesizing S, © [IAL_A21, [Bl B2)
Synthesizing . [fALA2), ¢] LgC0) a]= f(g(X),a) c

[Bl B2], [Al A2

[(A1,A2), c] [f(g(X>.a> N

rho ope'ratorp i LAl A2] . [B11 '
: [f(B1), CJ[f(g(Y)) ¢] —og(Y)

Condmonal dxfference

* parsing

[Al A21 __ [ALl _ [Al A2]
X fX) A1 &X) 7 hX) a
‘hX) a . L

Figure 3: an example of RAU-operators

B Tuples t; and i3 are redundant if 36: substitution; #; = t28. The scope of any
variable symbol in each tuple i is restricted within that tuple. Every tuple [al, -]
in rel(p) is mapped into p(al, ,an), an atomic formula of T Thrs mappmg [tuple
= wff] is deﬁned by each meta-relatron s scheme D

Our meta.-relatlon is almost the same as a term-relation in [YI86] except’ intro-
ducing a meta-theory. In Figure 2, a meta-relation R[A, B, .C] corresponds to a meta-
predrca.te R(A,B,C); which asserts that “there is an object-level wif (4,B)

-7 It is a set of object-level rules belonging to one common kind r. :

In the rest of the paper, attributes are referred to: by their names or posrtronID '
e. g an attribute B of R[4, B,C] is referred to by R[B], or R{2}, or only 2 if trivial.

Deﬁmtmn 2 given a tuple ¢ and a. meta-rela.tlon R

.= tlﬁo, where
90 is a renammg substrtutron, and tl 1s a tuple and an element of R.

. i E R 43t1 ,300 ,’ 3

st €y R ¢ 3t1 tuple, 36 : substitution ; ¢; € R and t = t,6. o

e.g. In Figure 2, t; = [{(Y), a, p(Y)] € R. t2 = [f(c), a, p(c)] Ew 'R, but € R
t[¢] is the i-th element of a tuple t; ;3] = p(Y). -

3.3 “RAU operators

RAU- operators are defined below. (M, N, R refer to meta-relations. refers toa
substitution. “=” refers to “be unified w1th” As logical connectives , {and, or, not,
imply, equrvalent} are expressed by { A, V, -, —, =}) Figure 2 and 3 gives their
exa.mples

Deﬁmtron 3 The followmg operators are called Relatwnal Algebra extended with
- Unification (RAU) o

— 296 —

H

* (union) MUN — same as that in relational algebra [Ull82], where the scheme
of M is the same as that of N.

o (cartesian product) M x N — same asf‘ﬂthvat,’in;elatidna.l algebra. M and N
share no common variable because of the scope restriction of their variables.

o selection‘,) OF() M[Ay, ... ,A,«.]'%é‘ {t|t esw M and F@)},
where F(t) is ALL,(1[i] £ C;), abbreviated as [4), ... »An] = [C1,...,C4]. Ciisa
compound term allowing ¢[7] (i # 7) as a variable symbol. The scope of variables
in C; is restricted within F(t). e.g. F(t)ist[1] £ f(1[2], X). (abbreviated as
A2 (43,%)). » b

o (synthesizing) S,cheme(M[4;, .23 An)) g R[Bi,...,Bm] =
{t13t15t1 € M, and t = scheme(t;)}, T .
where scheme = [B1,..., Bn], each B; is a compound term. Its variable sym-
bols must be A;,...,A4,. ‘sch’eme‘(t) is a compound term gained from scheme
by substituting t[i] for 4; respectively. ’

hd (PaISing) Pscheme(R[Bly seey Bm])d_—<Ef M[Ah teey An] =
{t|3t;;t1 €R, and ¢t; = scheme(t)}; B ‘
where scheme is the same as that in S-operator. A;,. -+yAn are those appeared
in scheme. AR

#o o {instantiation) LonaM([Ay, .., An) ¥ R4y 4, 0
o= {t 3,36t e M ,an"d<demo(T;,,?cond(il)P) and t=10.}, "

- such that cond is a propositional wif whose' propositional variables are 4;,...,
An. eg. AN As. Tyisan object-theory in Definition 1. cond(t;)1s ‘a'wif gained
from cond by substituting t,[i] for A; respectively. Dy sy hodl

o (conditional difference) -

M[As,..., An] = gtist N[A1,..., Am]) < RlAy,..., Au]
={t|te MandVs(se N — ~(t[Alist] 2 s[Alist]))},”
where Alist is a subset of {41,...,4,}. : o

Furthermore, abbreviations are defined.

o (projection) m ;e M [A1;.. -‘;An] S gt M)
where Alist is a subset of {A1y..0 A} :

s (natural join extended with unification — 5

C is a list of giommon;att»ributesp‘f,M and N.
¢ (rho-operator:) L St ARSI . , :
pTERM M[Ay, ..., An] € 71 Propy asranirery MlAL .. An],

wlle,rg_TERM be a list of _compound terms. Vlist is a._list._p{ dvistiny variable

" symbolsin TERM.
RAU-operators defined above can express those four operations in Section 3.1.
.+ .Let’s make a meta-relation ruledb[K, H,B] by a meta predicate ruledb(KB,
Head, Body) . Then the query in Figure 1 is described as a query tree Q[T, D]
as follows; '

— 297 —

PUSBENEITIERE A S

Q = mr,p) IB1aB2(p TERM: TuledbK, H, B1] R p rERM2 Tuledb[K, H, B2]) (1)

such that TERM1 = [kb1, key(T, story(aaa),japan(P,X)),Bl] and
TERM?2 = [kb2,store(M,T,D),B2). ‘

Among RAU-operators, I-operator is definitely unique to our RAU. S,P and p
are almost the same as combine, ‘extended projection, and eztended select/project
operators in ERA [Zan85] respectively. Hence compiled forms of rules are expressed
by. our RAU without unification. ¢ and R-operator are the same as unification-
restriction and unification-join in RBU [MYNI86). - - ' _

Our original points consist in the query-processing itself by RAU for a rule-DBMS;
i.e. a RAU query tree is a PROLOG meta-interpreter with exhaustive compilation
of rules to relational algebra programs. It expresses what combination of rules to be
retrieved, when to execute them, and calls ‘execution of iel?.tional algebra query trees
to a factDB. We accelerate this processing by fast executions of RAU-operators after
optimizing the query-tree. ' '

4 Query processing by RAU

4.1 Compilation of query

A query “q(Di,.-.,Dn):- demo(kbiy ri(LI ST,)).” is given, where LIST; is a list of
compound terms. If LIST; is [f(X),a,X], r1(LIST;) refers to r1(f(X),a,X). riis
a name of either base relation or derived one in deductive databases. Dj,..., Dy are.

: distihct Mari,ahle;symbols in LIST;. kb; is a subset of a object-theory. = -

Then this query is compiled to a RAU query-tree as follows;
Ri[Dy,...,Dn] = 7p,,...0,) 1B p[kb;,n(mgr;-) ;Bifﬁyledb[ff »H, B] _

Note that R; is ground because a base/ &erivedtrélé.tio‘f‘x T sh&ﬁl,d be so. Appar-
ently, the following theorem holds. : o
Theorem 1 A query “q1(C,...,Cm) : —w(D1,. . ;Dn)”‘ is gi‘vén such that
Ci,..+,Cm is a subset of Dy,...,Dyn. Then, it is comp;iled‘into a RAU query tree if

1. w(Ds,...,Dy) is a wif composed by { A,~,3 } of demo(kb;, r(LISTY)).
and S B

2. Let R;[VA,...,Vk] be a meta-relation expressing a query . 6l
“pi(Va, ..., Vi) : —demo(kb;, 7{(LIST;)).” such that V3, ... Vi are variable symbols in
LISTi. Then, gl is a safe relational calculus expression by substituting a relational
predicate R;(V4,..., Vi) for demo(kb;, ri(LI ST;)) in w respectively. :

eg. a query “q(T,D) : — demo(kbl,key(LIST1)), demo(kb2, store(LIST2)).” is
given such that LIST1 = [T, story(aaa), japan(P, X)] and LIST2 = [M,T, D). This
query is another form of that in Figure 1.

“g(T, P, X) : —demo(kbl,key(LIST1))" is compiled to Ry, and

“q(M,T,D) : — demo(kb2,store(LIST2))" is compiled to R respectively as follows;

— 298 —

o

RolT, P, X] = mz,p.x) 1 Pikb1, key(uisTay,z) TuledblK, I, B). (2)

Ro|M,T, D] = mp1,0) 18 Aikb2, store(rista)m) eledbl K, H, B).)

Apparently the given query ¢(T, D) is a. safe relational ca.lculus expression
“q(T, D) : — Ry(T,P,X), Ry(M,T,D). " . It is because R;,R; are ground. The
query is complled into a relational algebra expressxon .

QIT, D] = mr,p) (R1[T, P,X 1R Ry[M, T, D)) (4)

o (l§l is the same as usual join operation if it is restricted to a set of ground terms.) Q

is just a RAU-expression if substituting (2), (3) for Ry, R; in (4).
This compilation generates a RAU-query tree ha.vmg the followmg outline.

Q=IT % ... RIT: —, IR, -62...-c,,uz,,“

Their evaluation strategies are fixed but changed by commutative laws in the next
section. .

4.2 Commutative léws of RAU-operators e

A given RAU-query tree is optimized by commutative laws for RAU-operators. Each
law takes the form of e:cpre.sszonl = e:rpre.sstonZ “—w is defined as follows,

Definition 4 Given meta-rela.txons M and N

e Mch e vie Mit ey N.

e M=, N ¥ MCwNandNC.,‘M. L
[m} i s
" By Deﬁmtlon 1, any meta-relatxon M expresses a wif L(M);- a conjunction of
a universal closured wif mapped from each tuple in M. If meta-relations M and N
have a common scheme and mapping [tuple — wif], M =,, N implies L(M)= L(N)

Commutative laws hold as follows [Ohm87], (M N, R are meta-relations. 1,2,..
and a,b,¢ are attributeID).

1. UplApz(M X N) =w a,,l,\,,g(ale X UPQN), ' ’ :
where pl (or p2) is a selection- predlca,te about only a.ttnbutes in M (or NY).
e.g

l-f(X)/\2—.v(X)(M 1% N) =vo "/(X)Az—g(X)("l“f(X)M [t x o %52, (X>N (2D)-

2. Slpl.p2](M X N) =w Sle X szN o
where pl (or p2) is a scheme consisting of only a.ttnbutes in M (or N) e.g.

St (MI1,2] X N[3,4]) = Sml 2)]M [1, 21 X Sly(3)lN [3, 4]

3. (M&N)B&R_WM&(N&R)

— 299 —

R1 A T\ R2 ,' number of .R1's tuples generating

A = tuples in R1 Du<] R2
> o size ofARl
Ci S cz ¢ p n are defined in the ‘same way
' as A

- ‘ : Cl C2: execuuon cost for R1, R2
IR1 ~IR2

Figure 4: a query graph for IR; N IR,

4. opl, M[1,2) = L op M[1,2],
p is a selection predicate only about M([1].

»5‘ 7!'113M[1 2 3] =w 7l'113ﬂ‘1'3M[1 2 3]
6. Ions (M[a,c] R N[b,c]) =w I (I M[a,c]) R N[b,c]) = L.M][a,c] R ,N[b, c]

7. Iy M[a,b] —4 1. N{a,c] =, I, M[a, bl ~a L ((7a Iy Mla, b)) R Nla,c]),
~where 7, I M must be ground ; o \

4.3 Optimization strategies

The above laws 1 ~ 3 enable the same optimiiation strategies as those in PSJ query
class in a relational database [Ull82]. The laws 4 and 5 restrict rules before execution;
they reduce search-space when users give constraints interactively.

eg. 7y I[p(X,Y): —RAP]=ny 1[g(Y): -3X(RAP)].

‘This 3X is = opera.tor to relat;ona.l algebra programs RAP,
The law 6 a.ssures changing eva.luatxon strategies for a query

q:— AL, demo(kb,, r,(LIST,))

It is compiled into an expression E'= IRy N... & IR, (p, 7 are omitted.) . Each
meta-telation R; is a set of restricted rules expressing a kind “r;”. Each rule in R;
is a necessary one for evaluating demo(kb;, r‘(LIST)) Eis optlmxzed by changing
I-operator’s places and R’s. sequence in it based on a “query graph

Figure 4 illustrates a. “query graph” for “IR; M IR:”.r Fach edge (n1,n2) except
(R, IR;) expresses a RAU-expression n; M ng. Parameters on the edge is a success-
ratio in unification. An edge (R;,IR;) is a RAU-expression IR;: A parameter on the
edge is the ‘cost of I-operators to R;. Suppose that, when one edge in the query graph
is marked, a RAU-expression correspondmg to the edge is executed and the sum of
execution-cost is incremented. “Then , an optimization of I-operator and X sequence is
a problem to search the least-cost termznated sequence of edge-markmg in the query
graph. : o

— 300 —

ﬁ'. p P ETREEnO '
N SN\ N

n2

A N

X aY b ~a ¢ n3nd n5n6.

P : equal symbol

Figure 5: an example for ﬁhiﬁable atomic formulae

e.g. In Figure 4, a sequence ((R;;IR;),(R;,IR,),(R1,IR;)) corresponds to a
RAU-expression I(R; R (IR3)). This sequence is called terminated because it executes
all necessary operations for computmg all tuples in 12, R 1R,.

This optimization-problem is N P-complete. We use a little modified version of
Nearest Neighbourhood strategy for the optimization [Ohm87]. e.g. The query-tree
(4) in Section 4.1 is transformed to the query-tree (1) in Section 3.3 by the laws 5, 6
and other trivial laws about 7 and R,

Lastly, the law 7 corresponds to Negatzon as Failure [L1084]

5 An algorithm for a RAU-operator

Among RAU-operators, o, S can be executed by a filtering processor. The heaviest
operators are K and I-operator. This section proposes an algorithm for A & B such
that A, B : metarelations. I-operator is discussed in the next section.

For simplicity, we assume that both A and B consist of one attnbute Moreover,
they are sets of atomic formulae with one common (predzcate /arzty)

eg. A= {P(f(X),9(a,Y)), pla,A(X))}, B = {P(X h(a)), p(f(b) g(a o))}
Then, A% B = {p(f(8),9(a,)}, pla,h(a))}. O

Our algorithm’s strategy is explained at ﬁrst : R
(STRATEGY) Tuple t1,t; are given. They are atomic formulae havmg a, common
predxcate Depending on the predicate’s arity, we make a tree-structure TREE which
has nodes {ni}(i=1,.)- Figure 5 illustrates a TREE. when the arity is 2. Next, we
parse t; and t; based on the structure of TREE as .in Figure 5. Let Sl, S, be
respectively the symbols of the parsed tuples t1 5 t2 on thenode n; of TREE. Then,
the following assertion holds; (*) if t; and t2 are unifiable and neither Sy nor S is
a variable symbol, then S; must be equal to S,. :
“* Our algorithm filters out pairs of non-umﬁa,ble tuples by thls a,5sert10n (*) Fxgure
6 is an examiple of the algonthm

[M algorithm] S

stepO Set up a tree- structure TREE ha.vmg nodes {n.}(t = 1 e)t

stepl For each ‘tuple t e Aor B, parse t on TREE into a sequence of symbols
{Si}(i = 1,...). Each S; corresponds to a node n; of TREE.

- 301 —

(tl, t2 o tuples. A,B: meta-relations)
tl = p(f(X).g(aY)) € A 12 = P(f(b).g(ac) eB
(TREE is that in Figure 5)

divide A, B to buckets by hash- vcctorb

H(A1), H(BJ) hash- vector of buckct Ai,Bj.

v n0 nl n2 n3 nd nS5 nb6
tle Ai H(Al) [h(p) , h(H) , h(g) , 0, 0,h(), 0]
t2 € Bj I H®Bj) =[i(p)) hf) , h(g) , h(b),O, h(a), h(c)]

ep2] @ O O O X X O X
= [n0, nl, n2 , n5] for bucket combination (Ai ,Bj).
makc a sort-key for each tuple on N, and sort

Ai 2
_1 2tl: sort- “key= M\unlficatlon -try in-
Bj 212 : sort-key—- '/the sorted stream.

- Figure 6: an example of a &-dgorith;ﬁ ‘

Compute a vector-formed hash value H(t) = [h(So),h(S1),...] for each tuple ¢
where h((variable)) = 0, h((non — variable)) # 0, h(S;) = 0if S; does not exist -
/ This H i is ca]led “hash vector” ofa tuple t.

" Cluster A B into buckets {A }(,_1), {B,}(,_l 2) by each tuple s hash vector
H. . R

step2 For all bucket-combmatlon (A,,B), let H(A) = [pl, ,p,;] and H(B;j) =
C [ql, ,q,.,] be the hash- vectors of the bucket A;, B respectively.

I there is some k such that Pk # 0, gk # 0, and px- # gk, then there is no pair
of unifiable tuples in (4;, B;) by the assertion (*). - ;

+2If not, make N = {ny,...} of nodes in TREE such that p; = qk # 0asin
+ -~ Figure 6. Mergesort all tuples in A;{UBj;. Each tuple’s s sort-key is a sub- sequence
! [Skl,SkQ,] ‘of ‘the tuple s pa,rSed symbols such that each Sk corresponds to
“ngi'in N. Try a unification of each pair of tuples (t;,tz) in the sorted strea.m
e 'where tl and tg ha:ve a equa.l sort key : &
o .
TREE:in stepO should consist of those nodes {n,} such tha,t the symbol S of
parsed tuples on n; become non-variable symbols frequently over operand relations.
Probably, those nodes generate many tuples in each relation because they take many
different constant values. In Step2, the sort-key consists of those “tuple—generatmg
nodes, and filters out many pairs of‘non-unifiable tuples in A;U B;.
If TREE includes a node which tends to become variable symbols, sorting in

- 302 —

o

step2 will not reduce unification-load.- Therefore, it is important to set up an ap-
propriate. TREE in step0. For this purpose, we use statistic mformatlons about
distributions of tuples values in meta-relations [Ohm87]. '

" 6 Discussion

- This paper has proposed a deductive databa.se by Relational Algebm extended with
Unification (RAU) for managing both a mass of rules and many facts in a disk. We
. have given a compilation of query to a RAU query-tree, optimization for it, and an
algorithm for a RAU- -operator- X, , ;
 In a BAU query-tree, retrieval of rules i is accelerated by fast set operatlon algo-
‘rithms for RAU-operators, especially M. Retrieval of facts is a role of I-operator,
including common subexpression sha.rmg In our experimental system, each rule is
a simple relational algebra program such as a single selection or at most one large
size join. I-operator is executed by usual relatlona.l algebra algonthms with naive
" common subexpression sha,rmgs
Our approach has several open problems as follows;
"1. implementation of I -operator by conventional deductive databa.ses In con-
ventional fields, our- RAU accelerates optimizing a “graph-of-rules” before/ during
_ 'facts-retrieval. We think our system and conventlonal ones:are: supplements to each
‘other. ; : o TR St
2. recursive predicate. A recursive system isa strongly connected cornponent in a
graph of-rules” [CGLSG] It should be treated ‘as a non- decomposable unit. Because
our approach only needs a unit of compiled rela.tlonal a.lgebra program, current trends
‘in this field are consistent with ours.
.~ 3. random access to a ruleDB. In general, each rule is transformed into simpler
_ones, but they don’t always operate a factDB directly. In this case, a solution is a
virtual memory for PROLOG machines though it ma.y be dlfﬁcult A tnv1al one is a
I ma.m-memory database. -
.+ " Lastly, we must tell the difference between our RAU and RBU in [MYNISG],
RBU describes SLD-resolution in [Llo84] on a database machine. On the other hand,
“our DBMS processes both a large ruleDB and a large factDB through a common
pa.ra.dxgm i.e. RAU query-trees for the ruleDB and relational algebra. query-trees for
. the factDB.

References

‘ [Boc86] (J. Boqeé.. v On the E‘rfatluatiqn »S,trategy Qvf EDUCE ~In Proc. of
: ACM-SIGMOD International Conference on. Management, of Data ’86,
pages 368—378 1986

[Bowsl] K. Bowen. AMALGAMATING LANGUAGE AND. METALANGUAGE
IN LOGIC PROGRAMMING. Techmca.l Report, Syracuse University,
June 1981.

[CGLSG] S Cen G. Gottlob a.nd L. La,va.zza Tra.nslatlon and optlmnzatlon of loglc
- queries: the algebraic approach. In Proc. of the 12th Conference on Very
Large Data Base, pages 395-402, 1986.

— 303 —

’ [Gel86]

[GMT8]

(KHTS6]
k [KL86‘]V

[Llosd]
[Miy86]

[MYNIse]

[thh87]

A.V. Gelder. A Meeeage Passing Framework for Logical Query Evaluation.

In Proc. of ACM-SIGMOD International Conference on Management of

Data ’86, pages 155-165, 1986.

H. Gallaire and J. Minker, editors. LOGIC AND DATABASL‘S Plenum
press, 1978.

C. Kellog, A.Q’. Hare, and L. Travis. Optimizing the Rule-Data Interface
in a KBMS. In Proc. of the 12th Conference on Very Large Data Base,

pages 42-51, 1986.

M. Kifer and E.L. Lozinskii. A Framework for an Efﬁc1ent Impléementation
of Deductive Databases. In Proc. of the 6th Advanced Database Sympo-

' sium, pages 109-116, Information Processing Society of Japa.n, 1986.

J. Lloyd. Foundatzons of Logic Programmmg. Sprmger.—Verlag, 1984.

N. Miyazaki. Compiling Horn Clause Querzes in Deductive Databases:
A Horn Clause Transformatton Approach Techmcal Report 183, ICOT
1986

Y Monta, H. Yokota., K lehlda, andI Itoh Retneva.l—By-Umﬁcatlon

Operation in a Relational Knowledge Base. In Proc. of the 12th Conference

on Very Large Data Base, pages 52-59, 1986.

T Ohmon An Algebrazc Approach to Deductwe Database system for
managmg a Iarge amount of pmcedural knowledge Master’s thesw, ‘The

' University of Tokyo, 1987.

[Rei78]
[Sel8s]
(U182
[Ul8s)

[YIss)

[YSI86] |

R. Reiter. Deductive Questlon Answermg on Rela.txonal Data Bases: In
[GM78], pages 149—-177 1978.

TK. Sellis. GROBAL QUERY OPTIMIZATION kIn Proc. of
ACM-SIGMOD International Conference on, Management of Data 86,
pages 191-205, 1986, Pk

J. Ullman Prmczples of Data Base Systems Computer Scxence Press,

1982.

J. Ullman. Implementation of Logical Query Languages for Databases.
ACM Transaction on Database Systems, vol.10(No.3):pp.289-321, 1985. -

H. Yokota and H. Itoh. A Model and an Architecture for a Relational
Knowledge Base. In Proc. of the 13th International Symposzum on Com-
puter Architecture, pages 2-9, 1986.

H. Yokota, K. Sa,kal and H. Itoh. Deductive Da.ta.base System based on

" Unit Resolution. In Proc. of the 2nd- Internatzonal Conference on Data

o -'Engmeermg, 1986

[Zan85]

C. Zaniolo. The Representation and Deductive Retneval of Complex Ob-

: _]ects In Proc: of the 11th Conference on Very Large Data Base, pages 458

L 469,-1985.

— 304 —

i

e RS

