
Policy Description Language for Dynamic Access Control Models

Masaki HASHIMOTO†, Mira KIM†, Hidenori TSUJI† and Hidehiko TANAKA†
†Graduate School of Information Security, INSTITUTE of INFORMATION SECURITY

2-14-1 Tsuruya-cho, Kanagawa-ku, Yokohama, 221-0835, Japan
Email: {dgs074105, mira, hide, tanaka}@iisec.ac.jp

Abstract—Recently, dynamic access control models are pro-
posed to restrict access domain appropriately in Multi-Layered
Defense. However, policy description languages proposed so far
can not express the models effectively in proper granularity. In
this paper, we propose a policy description language which can
designate precise condition for access control by using dynamic
status of application process. Using the proposed language, we
compose the policy of SELinux which is major implementation
achieving Multi-Layered Defense and confirm the advantages
of the proposed language by evaluating the response and the
expressiveness.

Keywords-Access control; Computer security;

I. INTRODUCTION

In this paper, we propose a policy description language[1]

which can describe the dynamic access control models to

expand the application range of Multi-Layered Defense. Our

language expresses the dynamic status of processes as the

ground for authorizations, though languages proposed so far

describe access control rules based on the static information

like subjects, objects and operations.

Our language verifies the information flow of the future

or the past by reasoning, and uses the results as the access

control information for authorization. We present the im-

plementation of the proposed language with Datalog[2], the

subset of Prolog[3], and explain about the concrete way of

describing the access control rules based on the future/past

information flow and state designation of the processes.

As an experiment which demonstrates the validity of our

language, we compose the policy of SELinux and evaluate

the response performance and the equality of the contents

of responses between original SELinux and our language.

II. RELATED WORKS AND MOTIVATION

In this chapter, we show the related works and explain

the motivation of our research. First, we show the policy

of SELinux as an actual example of policy description

problems, then recent researches which focus policy descrip-

tions are presented. Finally, we explain the purpose of our

research.

A. Related Works

In this section, we show the outline of SELinux as a pre-

ceding research which achieves Multi-Layered Defense first,

and explain the problems related to the policy descriptions.

After that, several researches about the policy description

language in recent years are presented.

1) Policy Description Problems in SELinux: SELinux

is the implementation of the Flask security architecture[4]

for Linux kernel, mainly composed by the security server,

the object manager and the access vector cache. SELinux

evaluate the access control policy and forces access control

decisions by hooking system call functions which relate

to the access control in the kernel space. Because the

authorization can be evaluated with system call functions,

it is possible with SELinux that models like RBAC and

DTE are achieved in the granularity of the system call

level. However, describing fine-grained access control rules

is highly difficult for the human being on the other side,

though they must be described to control the accesses in the

fine-grained granularity.

For instance, SELinux’s policy is composed by lining up

access control rules as the followings.

allow acct t unconfined t:fd use;

allow acct t init t:process sigchld;

allow acct t init t:process signull;
allow acct t rpm t:fd use;

In the SELinux’s policy, one authorization rule is ex-

pressed in each line. The first item “allow” in each line

shows the line as a rule to permit some action. The second

item designates the information of the subject which this

rule is applied to, and the information of the object and

operation are designated for the rest. The rules by the syntax

are enumerated over the 40,000 lines in the simplest edition

policy for the individual users in the SELinux.

As a result, even if each rule can be understood intuitively,

it is difficult to predict what occurs actually with the policy

constructed as the collection of those lines. Additionally,

the situation must be more difficult in the near future,

because the techniques have been already proposed which

expand the application range of the mandatory access control

mechanism to the application layers and other networked

systems from the operating system layer of a single system.

2) Recent Researches: SDSI[5] and SPKI[6] are the

framework to evaluate reliability between the system by

exchanging a certificate. SDSI uses the predicate of “speaks-

for” to building the logic architecture and SPKI can encode

the predicates in the declaration as a tag. Furthermore, they

2009 Eighth IEEE International Conference on Dependable, Autonomic and Secure Computing

978-0-7695-3929-4/09 $26.00 © 2009 IEEE

DOI 10.1109/DASC.2009.129

37

has the characteristics to express a policy as an English

writing, but SDSI can not define and use the corresponding

predicate to the applications because it can use only speaks-

for as a predicate and SPKI can not define the suitable

predicate to the applications easily because of the restriction

from the tags though it uses more than one predicate.

Though the various conditions which are necessary for the

authorization decision can be defined, as for PolicyMaker[7]

and KeyNote[8] as well, the subject which can not define

the optional predicate corresponding to the application is re-

ported in the same way. SecPAL[9] is the policy description

language by the constraint logic programming and demands

for access are authorized officially when query to the set

of the clauses succeeds. The syntax of SecPAL is close to

the natural language, and semantics is composed by three

deduction rules. And it can express many access control

models by supporting various expressions like the delegation

of authority, the negation and the recursion, but it focuses

on the control of more than one management domain by

the easy and clear policy description technique, hence, the

examination for the dynamic elements is not the main target.

B. Motivation of Our Research

In this paper, we propose the expressive policy description

language which supports dynamic Multi-Layered Defense

with fine-grained granularity by using the process status

information and the results of information flow verification

as the ground of authorizations. Our language defines layer

composition dynamically by evaluating values to change

during the system operations in addition to them, and aim to

express the access control models of fine-grained granularity

beyond before. As for the description of the access control

models based on the dynamic information, recent researches

are not enough because they focuses in the technique to ex-

press delegation of authority briefly between the several do-

mains which are managed by own policies. Paying attention

to this point, our proposed language gives the authorization

decision to mandatory access control mechanism based on

the process status informations and the future and/or past

information flow, supporting access control models which

consider the dynamic conditions.

For instance, it can be expected to give the least authority

set to the agent process for the other system corresponding

to the status of tasks, or to exclude the future rivalry of

authority set between tasks in advance, and so on. And, by

verifying past information flow, the authorization decision

can be changed flexibly whether the process pass through

the trusted authentication mechanism which is specified

by policy. Furthermore, it becomes possible to prevent the

information flow which does not be intended by controlling

authorizations based on the dynamic status of the specific

process and the system, such as ”Disabled” and ”Polluted”.

Additionally, it can be expected to reduce the difficulty of

the policy description shown with the example of SELinux

as a result of the improvement in expression, because more

access control rules can be expressed in less descriptions.

III. POLICY DESCRIPTION LANGUAGE

In this chapter, we present the basic design of the pro-

posed language. First, we define the syntax and semantics

for the declarative statement and authorization query of

the policy. Next, we show several deductive rules to apply

to them. The proposed language adopts the syntax and

semantics to be similar to English which is intuitively easy

to understand, and deductive rules are very simple. The

predicate logic is the foundation of the our language.

A. Syntax and Semantics

We compose a policy as a set of the declarative statement

(DS: DECLARATIVE STATEMENTS) and access control de-

cisions are decided by Q (authorization queries) described

in the following syntax. Accesses are permitted or denied

by that answer.

DS ::= Policy Specifies fact if fact1,..., factn
Q ::= Policy Specifies fact | ∃x(Q)

E ::= x | A
T ::= claim E1 for E2 in E3

V ::= is authorized to T | will be authorized to T
| has role E | has type E
| has state E | role trans E

fact ::= E V
claim ::= allow | auditallow | dontaudit

| neverallow | transition
Bold forms represent fixed numbers, predicates and vari-

ables which do not influence the semantics. Policy shows

the subject which defines each DS, and Policy Specified is

always fixed in this syntax. facts shows the actual contents

of the access control rule and fact1,... factn are conditional

facts. As for Q, the conditinal clause of DS was removed

and Q express the confirmation of the existence of the DS
and constants are substituted for variables as passible.

E denote constants and variables. Constants means sub-

jects or objects for authorization and they represent pro-

cesses, domains, roles, and so on. We designate them as

alphabetical one character in the capital letter of italics fonts.

Variables are restricted its domain within the domain of

constants. Therefore, facts and DS are not substituted for

variables. T denote objects and operation for access in the

DTE model; E1 for the contents of the operation, E2 for

the object classes and E3 for the types of the object. And

claim designates the kind of authorization. has role, has
type and has state express the attributes which the subject

holds respectively. role trans designates whether the subject

could transit to the role designated with objects. claim is

equivalent to the predicate of the fact and they designate

the kind of permission.

38

We define the semantics of Q by the relations designated

by P, θ � Q in the following. P denotes the policy, a set of

DS. θ is the mapping function which maps the variables to

the constants or to the other variables and vars(X) designates

the variable clause which exists in the clause X. We interpret

Q as access control decision by the truth evaluation.

P, θ � Policy Specifies fact
iff P, θ |= Policy Specifies factθ,
and dom(θ) ⊆ vars(Policy Specifies fact)

P, θ−x � ∃x(Q) iff P, θ � Q

B. Deductive Rules

In the proposed language, it is possible to reduce the

amount of description of policy by using the deductive rules

and the formal verification of information flow expressed in

the rest becomes possible.

RULE (a)

(Policy Specifies fact if fact1, ..., factk) ∈ P
P |= Policy Specifies factiθ for all i ∈ {1..k}

vars(factθ)=̇0̇
P |= Policy Specifies factθ

RULE (b)

P |= Policy Specifies A has type B
P |= Policy Specifies B will be authorized to C

P |= Policy Specifies A will be authorized to C

RULE (c)

P |= Policy Specifies A has role B
P |= Policy Specifies B has type C

P |= Policy Specifies A has type C

RULE (d)

P |= Policy Specifies A has role B
P |= Policy Specifies B role trans C

P |= Policy Specifies A has role C

RULE (e)

P |= Policy Specifies A has type B
P |= Policy Specifies B will be authorized

to transition C for D in E

P |= Policy Specifies A has type C

RULE (a) deduces the statement with no variables from

the statement with conditional clauses and θ which makes

each fact in the conditional clauses vars(factθ)=̇0̇. RULE (b)

deduces the statement which designates A will be authorized

to C from the statement expressing A has type B and the

statement expressing B will be authorized to C. RULE (c)

deduces the statement which designates Type C is assigned

to A from the statement expressing Role B is assigned to

A and the statement expressing Type C is assigned to Role

B. RULE (d) deduces the statement which designates Role

C is assigned to A from the statement expressing Role B is

assigned to A and the statement expressing Role B transit to

Role C. RULE (e) deduces the statement which designates

Type C is assigned to A from the statement expressing Type

B is assigned to A and the statement expressing Type C is

assigned to the target objects when Type B generates Class

D in Type E.

IV. IMPLEMENTATION

In this chapter, we present the implementation of the

proposed language using Datalog and explain actual descrip-

tions of the access control models based on the dynamic

elements. We treat the authority set which will be able to

be held in the future or the past as the information flow.

A. Implementation of Proposed Language in Datalog

We implement the description language by using Datalog,

the subset of Prolog. Each declarative statement by the

proposed description technique is translated as a clause of

the Datalog program, and authorization decision sentence is

evaluated by tabled resolution as an query for the program.

First, we defines the term of Datalog by followings. Literal

L has the name of the predicate and a series of arguments.

An argument takes constant or variable. A clause is written

as L0 ← L1, ..., Ln and composed by one head literal in

the left part of “←” and the lists of the body literals in the

right-hand side. Each predicate of the proposed description

technique translated into the Datalog literal as follows. The

left part of “→” is the description by the proposed language

and right-hand side is a Datalog literal after the translation.

Policy Specifies E1 is authorized to claim E2 for E3 in E4

→ isAuthedto(claim, E1, E2, E3, E4)
Policy Specifies E1 will be authorized to claim E2 for E3 in E4

→ willbeAuthedto(claim, E1, E2, E3, E4)
Policy Specifies E1 has role E2 → hasRole(E1, E2)
Policy Specifies E1 has type E2 → hasType(E1, E2)
Policy Specifies E1 has state E2 → hasState(E1, E2)
Policy Specifies E1 role trans E2 → roleTrans(E1, E2)

The predicate of fact in the declarative statement is

translated as the predicate of the Datalog literal, and the

arguments of fact are translated as arguments of the Datalog

literal with translating technique in the proposed language.

And as for the declarative statement with the conditional

clause as well, we use conditional clause as the body of the

Datalog clause after the translation to Datalog literal by the

above technique.

B. Verification of Information Flow

In this section, we present the verification of the informa-

tion flow by the state designation in the proposed language

and show the actual description of access control using the

result of it.

In the proposed language, we verify the information flow

in the future seen from one moment of the process using the

reasoning with the embedded predicate will be authorized

39

to. Additionally, we describe an access control rule based

on the verification of the information flow which existed in

the past, acquiring dynamically from the system, using the

the embedded predicate has state with user-defined state by

which process state designation should be made possible.
We verify the information flow of the future and the past

with the following process.
As for the future information flow, DS is verified by

evaluating the authorization decision sentence for which the

embedded predicate will be authorized to was used. The

past information flow is deduced by applying the rules (b)

∼ (e) in the section III-B recursively to the authorization

decision sentence includes a variable clause.
For instance, we assume the DS which keeps the declara-

tive statement of the following 11 rules and show the process

which deduces the future information flow from a certain

authority set, denoting U for user, R for role, T for type, C
for object class and AV for operation.

Policy Specified UA has role RA (1)

Policy Specified UB has role RB (2)

Policy Specified UC has role RC (3)

Policy Specified RB role trans RC (4)

Policy Specified RA has type TA (5)

Policy Specified RB has type TB (6)

Policy Specified RC has type TC (7)

Policy Specified TA is authorized
to transition TC for C in TB (8)

Policy Specified TA is authorized
to allow AVA for C in TB (9)

Policy Specified TC is authorized
to allow AVB for C in TD (10)

Policy Specified TC is authorized
to allow AVA for C in TB
IF TC has state passedtd (11)

With this example, when the future information flow of UA

is verified, UA will be authorized the authority set of AVA

of C in TB and AVB of C in TD by deducing with the rules

(1) (5) (8) and (9). And when the future information flow

of UB is verified, UB will be authorized the authority set

of AVB of C in TD by deducing with the rules (2) (4) and

(10). Similarly in the case of UC , the authority set of AVB

of C in TD will be authorized by deducing with the rules

(3) (7) and (10). For the verification of the past information

flow, we define the state passedtd and give the truth value of

“whether a certain subject accessed TD” dynamically from

the system. With this example again, fixed authority set for

TB is authorized TC by evaluating the rules (2) (7) and (11)

which designate TC accessed TD in the past.
In the proposed language, the information flow can be

verified exhaustively by applying deductive rules recursively

even when the transition of the roll and the type piles up

to many times. Additionally, we can describe various access

control rules flexibly in the proposed language using the

user-defined state. For example, the access control models

of HBAC and execution history based access control can be

described using the states of the process and the system by

acquiring “process was started.”, “process was finished.”, and

so on dynamically and it can be expected that the Chinese

Wall model can be described efficiently using the state of

“The resource of a certain domain was read once.”

V. DISCUSSION

In this chapter, we present the results of the experiment

which evaluates the advantages of the proposed language.

First, we show the outline of the experiment system and

programs. Then, we compare the response performance

to judge authorization with the proposed language and

SELinux, examining the results considering the impact of the

access vector cache (AVC). And, we confirm the contents

of the responses and demonstrate that proposed language

can compose the policy of SELinux equivalently when the

default policy of actual SELinux is constructed by the

proposed language. Finally, we compare the features which

can be used for the description about the proposed language

and SELinux to evaluate the expressiveness qualitatively.

A. Outline of Experiment System

The experiment system is implemented on the computer

of the Pentium 4 (3.0GHz) and the memory 1GB and

OS is Debian/GNU Linux added the packages related to

SELinux. The versions of main softwares are libselinux1

(2.0.65-5), selinux-basics (0.3.5) and selinux-policy-default

(2:0.0.20080702-6).

With the experiment system, we change the source related

to SELinux so that we can acquire the address of sidtab

and avtab which exist in the kernel space, and get all the

contents of the table from the pointer to the acquired hash

layout. Then, we change the source to call the function

context struct compute av() from the outside of kernel,

and measure processing time except for the translation from

SID to the security context. Furthermore, we describe all the

elements on avtab by the proposed language and compose

the policy database using Datalog from the descriptions and

prepare the queries by the combination of the source context,

the target context and the target class.

We use the RDTSC instruction of x86 for the measure-

ment of the time and devise not to read TSC of another core

setting the CPU affinity flag.

B. Evaluations of Response Time and Contents

In this section, we confirm the response performance and

the equality of the contents of response describing the default

policy of SELinux in the proposed language. In the experi-

ments, we call the function context struct compute av()
by using all the elements of sidtab at the round robin to the

security class, and measure the time when the acquisition

of AV as response. After that, we confirms the equality

of the response contents, comparing the responsed AV of

40

Responce Time (μs)

F
re

qu
en

cy

0 50 100 150 200

0
50

10
0

15
0

20
0

25
0

30
0

Figure 1. Response Time of SELinux

context struct compute av() and the result of querying

the Datalog with the combination of the same source context,

the same target context and the same target class.

We show the result of measurement of the response per-

formance about SELinux and the proposed language in fig.1

and fig.2. Each figure shows the frequency distributions from

the result of the experiments for 1,000 elements choosed at

random from 13,803,559 elements of all sid which make

queries combined at the round robin. The x-axis designates

the response time from a demand for a authorization decision

to acquisition of AV, and the y-axis designates the frequency

of each response time.

As a result, the response times of SELinux were minimum

of 2.775μs, maximum of 177.2μs and median of 11.44μs.

And the response times of proposed language with Datalog

were minimum of 1,275μs, maximum of 6,485μs and me-

dian of 4,737μs. Beyond a two-digit number of difference

between SELinux and proposed language was confirmed

from the experiments. As for the equality of contents of

responses, for 13,803,559 queries, same AV of 2,629 ac-

quired and no AV of 13,281,253 acquired which mean the

contents of response was the same in SELinux and the

proposed language. As a result, about 96% responses were

equal in the contents of response. And, the rest of responses

were the error by querying to the context which was formed

dynamically at the time of the systems operation.

By the experiments, it was demonstrated that all the

contents of responses with the same query was corresponded

between SELinux and the proposed language with Datalog

except for the errors, and confirmed that the policy of

Responce Time (μs)

F
re

qu
en

cy

1000 2000 3000 4000 5000 6000 7000

0
50

10
0

15
0

20
0

25
0

30
0

Figure 2. Response Time of Proposed Language with Datalog

SELinux could be expressed equivalently in the proposed

language. On the other hand, the response time of the

proposed language was inferior greatly for the query of

the same contents. We guess the inferior is caused by

the difference of the implementing form and the search

algorithm of the policy database. About the implementing

form, the policy database and the evaluation functions are

implemented inside the kernel space for SELinux, while the

proposed language with Datalog implements them in the

user space. Hence, for improvement, the processing system

of Datalog need to be set inside the kernel and the execution

steps concerned with the context switch can be reduced.

Additionally, about search algorithm, we can guess that

this difference is reduced because almost all queries are

processing by the cache mechanism called AVC in actual

operations, and it is said generally the AVC hit rate of

SELinux is over 99%.

C. Evaluation of Expressiveness

In this section, we compare the features of the proposed

language and SELinux, evaluating the expressiveness qual-

itatively. Three functions used for policy descriptions are

evaluated. Table I is the results.

The first function is to make the rule enable/disable based

on some conditions. This means the result of not only

searching the existence of the queried statement in the policy

but also evaluating the various conditions given to each rule

decide the authorization decision. The expression of flexible

authorization decisions using the second function and the

third function is achieved by using the first function. For

example, by the former technique, rules become the forms

41

����������Features
Language

SELinux Policy Proposed Language

1. Enabling/Disabling the rules based on the condition � ◦
2. Treating the system or process state as the condition X ◦

3. Treating the future/past information flow as the condition X ◦

Table I
COMPARISON THE FEATURES OF DESCRIPTION

of “allow the process A to read the resource B.” On the

other hand, by the latter technique, rules become the forms

of “If the condition C is true, allow the process A to read

the resource B.”, introducing condition evaluation for the

rule, therefore, the rules are enable/disable depending on

the results of the evaluation of the condition.

The second function is to describe systems and processes

states as a condition and the state transition system can be

expressed efficiently by this function. Furthermore, we can

describe the authorization rules considering the transaction

processing states, the damage states, and the time states,

and so on by this function. For example, the rules like

followings can be expressed; “If the process A and B is in

state ‘finished’, allow the process C to read the resource

D.” for the transaction processing state, “If the process

A is in state ‘polluted’, deny the process B to read the

resource C-F.” for the damage states, “If the system is in

state ‘AfterDate20090815’, allow the process A to read the

resource B.” for the time states.

The third function is to describe the result of information

flow verification as a condition, and the rules based on

the temporal logic can be expressed by this function. For

example, the rules like followings can be expressed; “If it

would be authorized to write the resource A in the future,

reading of the resource B can not be authorized.”, “”If it has

writing authority to the resource A from now on, reading to

the resource B will be recognized.”, “If the resource A had

been read in the past, writing to the resource B would not

be authorized.”

VI. CONCLUSION

In this paper, we proposed a policy description language

which can describe dynamic access control models in addi-

tion to the existent models like RBAC and DTE to prepare

for the application range expansion of Multi-Layered De-

fense. We showed the description technique and some deduc-

tive rules which make each access control rule effective eval-

uating the dynamic information. And we implemented the

proposed language using Datalog, and explain the concrete

way of describing the access control rule by the proposed

technique which is based on the future/past information flow

and state designation of the system and the process. Finally,

we confirmed the advantages of the proposed language by

evaluating response times, response contents and expressions

by the experiments. The improvement of the performance

and the formal proof of the proposed language are the future

works.

ACKNOWLEDGMENT

The authors are grateful to the anonymous referee for her/his

valuable comments.

REFERENCES

[1] “Trusted computer systems evaluation criteria,” DoD Computer
Security Center, Fort Meade, MD, Tech. Rep. CSC-STD-001-
83, August 1983.

[2] S. Ceri, G. Gottlob, and L. Tanca, “What you always wanted
to know about datalog (and never dared to ask),” IEEE Trans-
actions on Knowledge and Data Engineering, vol. 1, no. 1, pp.
146–166, Mar 1989.

[3] D. H. D. Warren, L. M. Pereira, and F. Pereira, “Prolog -
the language and its implementation compared with lisp,” in
Proceedings of the 1977 symposium on Artificial intelligence
and programming languages. New York, NY, USA: ACM,
1977, pp. 109–115.

[4] R. Spencer, S. C. Corporation, S. Smalley, P. Loscocco, N. S.
Agency, and M. H. D. Andersen, “The flask security archi-
tecture: System support for diverse security policies,” in in
Proceedings of The Eighth USENIX Security Symposium, 1999,
pp. 123–139.

[5] M. Abadi, “On sdsi’s linked local name spaces,” J. Comput.
Secur., vol. 6, no. 1-2, pp. 3–21, 1998.

[6] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas,
and T. Ylonen, SPKI Certificate Theory. United States: RFC
Editor, 1999, ch. 2693.

[7] M. Blaze, J. Feigenbaum, and M. Strauss, “Compliance check-
ing in the policymaker trust management system,” in FC
’98: Proceedings of the Second International Conference on
Financial Cryptography. London, UK: Springer-Verlag, 1998,
pp. 254–274.

[8] M. Blaze, J. Feigenbaum, and A. D. Keromytis, “Keynote:
Trust management for public-key infrastructures (position pa-
per),” in Proceedings of the 6th International Workshop on
Security Protocols. London, UK: Springer-Verlag, 1999, pp.
59–63.

[9] M. Becker, C. Fournet, and A. Gordon, “Design and seman-
tics of a decentralized authorization language,” in CSF ’07:
Proceedings of the 20th IEEE Computer Security Foundations
Symposium. Washington, DC, USA: IEEE Computer Society,
2007, pp. 3–15.

42

