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Abstract. This paper proposes two compiler-assisted techniques to im-
prove thread level control speculation in speculative multithreading exe-
cution. The first technique is to identify threads which have exactly one
successor and the successor’s address is statically known (we call these
threads fixed-successor threads), and use a small full associative buffer
to predict the successors. This technique reduces aliasing in the original
thread predictor and increases the overall prediction accuracy. The sec-
ond technique is to insert validation information at points where the ad-
dress of the successor thread is resolved. This early validation technique
enables the processor to validate thread prediction earlier and reduce the
penalty when a misprediction occurs. Our evaluation results show that
for a 2K-entry predictor, a 5.8% average performance improvement can
be achieved by combining the two techniques.

1 Introduction

Recently, numerous researches have focused on speculative multithreading to
exploit thread level parallelism (TLP) from sequential applications [1, 3, 5, 6, 8,
9]. Speculative multithreading partitions sequential programs into threads and
executes them in parallel. In contrast to conventional parallelization approach,
data or control dependences may exist among threads and various speculation
techniques are performed to extract more parallelism.

This paper proposes two compiler-assisted techniques to improve the effi-
ciency of thread level control speculation in speculative multithreading archi-
tectures. Our techniques aim to both increase the accuracy of thread prediction
and reduce the penalty when a misprediction occurs. The first technique is to
identify threads which have exactly one successor and the successor’s address is
statically known. We call these threads fixed-successor threads. We use a small
full associative buffer we call fixed-successor cache to predict their successors.
Using this technique we can reduce aliasing in thread predictor and improve the
overall prediction accuracy.

The second technique is to insert validation information at points where the
address of the successor thread is resolved. Using reachability analysis, the com-
piler identifies control independent points of successor threads and inserts assert



instructions. When a processing unit encounters an assert instruction, it notifies
the thread control unit of the address of successor thread. This early validation
technique enables thread prediction to be validated even before the execution
of the current thread finishes, thus reducing the penalty when a misprediction
occurs. Our evaluation results show that combining the above two techniques
improve the achieved performance by 5.8% in average.

The remaining parts of this paper is organized as follows. Section 2 sum-
marizes related work on thread level control speculation. Section 3 describes
baseline architecture used in this research. The compiler-assisted techniques we
propose are described in section 4. Section 5 shows and discusses the evaluation
results. Finally, section 6 concludes the paper.

2 Related Work

Approaches taken by speculative multithreading architectures to perform control
speculation can be broadly classified into two categories. The first category is to
support a limited control speculation, in which threads are spawn only at highly
predictable points such as loop iterations and function boundaries. Many of the
previously proposed architectures fall into this category [1, 3, 5, 6, 9]. Although
this approach minimizes penalty caused by control misspeculation, it limits the
potential to exploit higher parallelism especially in integer applications. In these
applications, innermost loop iterations, for example, typically only occupy a
small portion of the total executed instructions [6,10].

The second category of control speculation is to aggressively predict and
spawn threads as early and as many as possible. This approach is used in Mul-
tiscalar [4, 8] and also employed in this research. In Multiscalar, the compiler
inserts statically known addresses of thread candidates to thread header. This
technique reduces the hardware cost of the predictor. However, this results in
longer prediction latency since the address must always be brought from the
instruction cache. Furthermore, the size of thread header relative to the thread
size is substantially large. This overhead may result in instruction cache contam-
ination and a reduced overall throughput. Our approach of using fixed-successor
characteristics is a compromise of this trade-off. We suppress the overhead of
thread header while still contributing to the increase in prediction accuracy.

The approach of early thread validation is useful to reduce the effective mis-
speculation penalty. From another perspective, it can also be seen as a tech-
nique to exploit control independence characteristics of instructions. Control
independence has been shown to be an important source of parallelism and its
implementation issues are under investigation [2, 7]. Early validation enables
our architecture to exploit parallelism from control independent instructions in
successor threads of the current point of execution.



3 Baseline Architecture
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Fig. 1. Baseline architecture.

Throughout the paper, we assume a spec-
ulative multithreading chip multiprocessor as
shown in figure 1. It comprises of a thread
control unit (TCU) and four processing units
(PUs). Each PU has a private register file
and L1 caches. Finally, an L2 unified cache
is shared by all the PUs.

A sequential program is partitioned into
threads statically by a compiler. A thread is
defined as a connected subgraph of a static
control flow graph with a single entry node.
It may comprise a basic block, multiple ba-
sic blocks, loop body, or entire function. Most
threads consist of 10-20 dynamic instructions. During program execution, the
processor’s TCU predicts threads following the program order, and schedule
each thread to a processing unit in a round-robin fashion. We assume a register
communication mechanism to synchronized inter-thread register dependencies.
We also assume a hardware support for thread level memory speculation support
similar to [5].
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Fig. 3. Accuracy of thread pre-
diction using the baseline pre-
dictor.

TCU includes a thread predictor which predicts address of thread that follows
the current thread in program order. In this paper, we use a 2K-entry path-
based predictor as a baseline predictor. Figure 2 illustrates the structure of the
predictor. It consists of a set of history registers, which record addresses of the
three most recently executed threads, and a Thread Target Buffer (TTB) which
holds the addresses of successor threads. We used a 4-way set associative table
for the TTB with four-bit tags to reduce the effect of conflict aliasing.

The index for accessing the TTB is generated by applying a hashing func-
tion on history registers. Here we adopt a hashing function proposed by Mul-



tiscalar [4]. In this scheme, lower address bits of the history registers are con-
catenated to form an intermediate history. The final history is then constructed
by folding the intermediate history. Folding is done by dividing the intermediate
history into several, identical length subfields and then XORing those subfields.
Four bits of the final history are used as tag and the rest of the bits are used as
an index for TTB.

Figure 3 shows the accuracy achieved using this thread predictor. While a
high accuracy is achieved for m88ksim, the accuracy of go and gcc is low. For
these programs, in addition to a low predictability characteristic, the aliasing ef-
fect caused by the index folding further reduced the prediction accuracy achieved.
Our technique of using fixed-successor information as will be described in the
next section, helps to reduce this aliasing by avoiding highly predictable threads
to occupy entry in the TTB.

4 Compiler-Assisted Thread Level Control Speculation

In this section, we explain the two compiler-assisted techniques we propose to
improve thread level control speculation in speculative multithreading architec-
tures.

4.1 Fixed-Successor Threads

We defined a fixed-successor thread as a thread which has exactly one successor
and the successor’s address can be determined statically. Fixed-successor threads
occupy 30% of the total number of threads executed in SPEC95int bench-
mark. Although successors of fixed-successor threads are theoretically highly
predictable, due to aliasing effect, the thread predictor fails to predict them. For
example, in go, the misprediction rate for successors of fixed-successor threads
is 15.8%. Furthermore, the successors unnecessarily occupy entries in TTB in-
creasing the effect of aliasing.

We use the characteristics of fixed-successor threads to reduce such mispre-
dictions. A small full associative buffer is added to exclusively predict the suc-
cessors of fixed-successor threads. We call the buffer fixed-successor cache. The
organization of the predictor is shown in figure 4. When predicting a successor
thread, both of the TTB and fixed-successor cache is looked up. If a valid entry
is found in the fixed-successor cache, the predicted address obtained from it is
used. Otherwise, the predicted address obtained from the TTB is used. TTB is
always updated when a misprediction occurs, while fixed-successor cache is only
updated when the mispredicted thread is a successor of a fixed-successor thread.

To identify fixed-successor threads during the execution, the compiler put
marks on their thread headers. Fixed-successor threads can be statically deter-
mined using thread reachability analysis on the program control flow graph. The
compiler also inserts starting address of the successor into the header. When a
fixed-successor thread is assigned to a PU, the PU decodes the header and no-
tifies the thread control unit of the successor address. When the TCU detects
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Fig. 4. Structure of thread predictor with a 64-entry fixed-successor cache.

a misprediction, it flushes the current thread and restarts execution of a new
thread using the address supplied by the PU. We call this technique early fixed-
successor validation. This technique can also be interpreted as a special case of
early validation described below.

4.2 Early Validation

In a conventional approach, the validation of thread prediction must wait until
execution of the current thread finishes. The content of program counter (PC)
is then notified to thread control unit and used to validate the prediction. When
a misprediction occurs, the previously predicted thread is flushed and a new
successor thread is restarted using the notified address.

Misprediction penalty of the conventional approach is unnecessarily large.
Thread control speculation can be validated earlier since the possible paths
taken by the control flow converge as the execution advances. The misprediction
penalty can be reduced if the thread control unit knows some information about
the possible path a thread may take.

We defined assert point and reject point to exploit this characteristic. Assert
point is a point where the successor thread can be uniquely determined. In con-
trast, reject point is a point where a successor thread becomes unreachable. To
identify these points, the compiler performs reachability analysis of the control
flow for each statically defined thread in the program.

Figure 5 illustrates how the compiler identifies assert and reject points. Sup-
pose there is a thread which comprises four basic blocks (BB1∼BB4) as shown in
figure 5(a). The thread has three successor thread candidates: Thread A, Thread
B, and Thread C respectively. Using control flow reachability analysis, the com-
piler identifies assert points where only one of the three threads is reachable.
Similarly, the compiler also identifies reject points where one or more of the
successor threads become unreachable points. Figure 5(b) shows the position of
assert and reject points.
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Fig. 5. Identification of assert and reject points in a thread.

For each assert or reject point, the compiler inserts a special instruction to
notify the TCU about the reachability of the successor thread candidates. We
call the instructions assert instruction and reject instruction respectively. The
instructions carry a pointer to a register that will hold the starting address of a
successor thread in consideration. Another instruction to set the thread address
into the register is also inserted. This results in two additional instructions for
each assertion or rejection of a thread.

The instructions are processed as follows. When a PU executing a thread
encounters an assert instruction, it notifies and sends the address of the successor
thread to TCU. TCU then checks if the address of thread predicted earlier
matches the address notified by the processing unit. If a mismatch occurs, the
TCU knows it has mispredicted the successor thread and can start the procedure
to flush the mispredicted thread and restart the execution of a correct successor
thread.

Similar notification mechanism is also used for reject instructions. When
the TCU is notified by a PU, it does the address matching process. In case of
notification initiated by a reject instructions, misprediction can be detected if
the notified address matches the predicted address. If it is the case, the thread
control can flush the mispredicted thread, and optionally repredict and restart
an execution of another thread.

5 Evaluations

5.1 Simulation Environment

To evaluate the performance advantages of using our compiler-assisted tech-
niques, we conducted simulations using a trace-based speculative multithreading
CMP simulator. The simulator simulates a 4-PU CMP as previously described
in section 3. Each PU is a 4-issue 10-stage out-of-order superscalar core with
a 32KB L1 data and instruction cache (2-cycle latency). L2 cache shared by
all PUs is assumed to have an infinite size (always hit, 6-cycle latency). Eight



SPEC95int benchmark applications are used for the simulations. The input pa-
rameters are adjusted so that the execution finishes between 100-300 million
instructions.

5.2 Simulation Results

We simulated the following five control speculation models.

– TTB: This is our baseline model. Threads are predicted using a path-based
predictor with a 2K-entry TTB as described in figure 2.

– TTB+FSC: This model integrates a 64-entry fixed-successor cache into the
TTB model. The structure of the predictor is shown in figure 4.

– TTB+FSC+EFSV: In addition to TTB+FSC model, this model employs
early fixed-successor validation. Header of a fixed-successor thread holds the
address of its successor. After the header is decoded, the address is notified
to the thread control unit for validation.

– TTB+FSC+EFSV+ASSERT: In addition to TTB+FSC+EFSV, this
model further employs early validation technique using assert instructions
as previously described in section 4.2.

– TTB+FSC+EFSV+ASSERT+REJECT: In this model, we further
added early validation technique using reject instructions. Since reject in-
struction by itself does not tell the correct successor address, the thread
control unit has to repredict a new thread when there is a misprediction.
Here, since our first interest is on the potential of early validation using
reject instructions, we assume that the prediction always succeeds.
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Fig. 7. Prediction accuracy
improvement using fixed-
successor cache.

Figure 6 shows the performance gain of the last four models over the baseline
TTB model. TTB+FSC model improved the performance by 0.5% in average.



The performance gain is especially noticeable for go, gcc and vortex, which have
large footprint characteristics. For these programs the improvements are 2.2%,
1.1%, and 1.1% respectively. These gains came from a better prediction accu-
racy achieved by integrating fixed-successor cache into the thread predictor. The
increase of prediction accuracy for each application is shown in figure 7.

Employing early fixed-successor validation as in TTB+FSC+EFSV model
further increased the performance gain relative to the baseline model to 1.2% in
average. Similar to TTB+FSC model, the improvements are especially observ-
able in go, gcc, and vortex. In these applications, early fixed-successor validation
salvages the performance loss when a successor of a fixed-successor thread is
mispredicted by both the TTB and the fixed-successor cache.

Applying early validation technique using assert instruction as in
TTB+FSC+EFSV+ASSERT model, significantly increased the performance to
an average of 5.8% over the baseline model. Especially in go and vortex the
gains are substantially large: 15.2% and 13.5% respectively. This is because in
go, the control flow is hard to predict and accuracy of baseline predictor is low.
Therefore, early validation significantly reduced the penalty suffered from thread
mispredictions. As for vortex, the largest part of mispredictions happens when
predicting a successor thread of a thread exiting from a return instruction. In
this case, since the return address is also notified using assert instruction, the
misprediction penalty is significantly reduced.
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Although the impact early val-
idation technique using assert in-
formation is significant, further
incorporating early validation us-
ing reject instructions is not ben-
eficial for some applications. This
is mainly because the execution
overhead of inserted reject in-
structions is larger than the ef-
fect of reduced misspeculation
penalty. Figure 8 shows the num-
ber of assert and reject instruc-
tions inserted as a ratio to the
number of useful instructions. It
can be seen that in perl, for ex-
ample, the overhead of reject in-
structions was so large that even
when we assume a perfect reprediction mechanism, the performance is degraded.

Figure 9 shows the performance gain when we varied number of TTB en-
tries. TTB+FSC+EFSV+ASSERT model achieved higher performance than
TTB model by 8.6% at 1K-entry, and 2.8% at 16K-entry. The gain is smaller for
a larger TTB, because TTB alone achieves higher prediction accuracy. However,
using compiler assistance, TTB size can be reduced substantially while keeping
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performance. For example, TTB+FSC+EFSV+ASSERT model with 1K-entry
TTB shows better performance than 4K-entry TTB with no static information.

Figure 10 shows the breakdown of thread execution count when
TTB+FSC+EFSV+ASSERT model is employed. It explains where the perfor-
mance gain shown in figure 6 originated from. The summation of FS cache hit
and TTB hit gives overall hit rate of thread prediction. The hit rate is higher
than the original thread predictor used in the baseline model, which explains
performance improvement made by fixed-successor information. The amount
of asserted threads indicates the performance gained by lower missprediction
penalty achieved with assert instructions. Those two factors together contribute
to overall speed up.

6 Conclusion

This paper explored compiler-assisted techniques to improve thread level control
speculation in speculative multithreading executions. The first technique used
the compiler to identify fixed-successor threads, i.e. threads which have exactly
one successor and the successor’s address is statically known. Since successor of
these threads are easy to predict, instead of the original path-based predictor,
we used a small full associative buffer for the prediction. We call this buffer
fixed-successor cache. This technique helps to reduce aliasing in the path-based
predictor and increase the overall accuracy of thread prediction.



The second technique used the compiler to analyze the control flow struc-
ture of threads and insert validation information at points where the address
of the successor thread is resolved. This information is used to validate thread
prediction earlier, thus reducing the penalty when a misprediction occurs. From
another perspective, this technique also enables the processor to exploit more
parallelism from a successor thread when it becomes control independence rela-
tive to the current thread.

Our evaluation results showed that for a 2K-entry path-based predictor, a
5.8% average performance improvement can be achieved by combining the two
techniques. The results also show that our techniques are especially useful when
the aliasing effect in the original predictor is prohibitive.
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