
An Addition Algorithm in Jacobian of

Cab Curves

Seigo Arita

Internet Systems Research Laboratories, NEC, Kanagawa, 216-8555, Japan

Abstract

Nowadays, elliptic curve cryptosystems receive attention and much effort is being
dedicated to make it more and more practical. It is worthwhile to construct dis-
crete logarithm based cryptosystems using more general algebraic curves, because
it supplies more security sources for public key cryptosystems. The presented paper
introduces Cab curves. Roughly speaking, a curve is Cab if it is non-singular in its
affine part and if its singularity at infinity is “nice”. Cab curves compose a large
family of algebraic curves, including elliptic, hyperelliptic and superelliptic curves.
The paper shows an addition algorithm in Jacobian group of Cab curves in three
steps: firstly with a geometrical point of view, which is impractical, secondly by
translating the algorithm in the language of ideals, and finally, the final algorithm
in which some costly steps are removed. The paper also gives experiments that prove
that the algorithm behaves well in practice.

1 Introduction

Nowadays, elliptic curve cryptosystems(ECC) receive attention and much ef-
fort is being dedicated to make it more and more practical. ECC is a public key
cryptosystem based on the discrete logarithm problem on a group of points on
an elliptic curve. A general algebraic curve also has a group, Jacobian group,
roughly speaking, which is a group of point sets on a curve. It is worthwhile
to construct discrete logarithm based cryptosystems using Jacobian group of
general algebraic curves beyond elliptic or hyperelliptic curves, because it sup-
plies more security sources for public key cryptosystems.

Suppose a family F of algebraic curves (which is bigger than a family of elliptic
curves) is given. To construct a discrete logarithm based cryptosystems using
the family F , we need to solve the following two basic problems.

Problem 1 Find an efficient algorithm for addition in Jacobian group of any
curve in the family F .

Preprint submitted to Elsevier Science

Problem 2 Find an efficient algorithm to find a curve with Jacobian group of
almost prime order in the family F .

Problem 1 is solved in the case of hyperelliptic curves [1,6], and can be dealt
with rather easily in superelliptic curves [4]. Problem 2 is partially solved in
hyperelliptic curves [7,11,2].

Miura[9] has found a family of algebraic curves named “Cab curve” in the
development of algebraic geometry codes. Roughly speaking, a curve is Cab if
it is non-singular in its affine part and if its singularity at infinity is “nice”, in
the sense that there is only one place at infinity and it is of degree 1. Cab curves
compose a large family of algebraic curves, including elliptic, hyperelliptic and
superelliptic curves.

This paper gives a solution for Problem 1 in the case of Cab curves. An algo-
rithm for addition in Jacobian group of Cab curves is given in three steps: firstly
with a geometrical point of view, which is impractical, secondly by translat-
ing the algorithm in the language of ideals, and finally, the final algorithm in
which some costly steps are removed. This paper also gives experiments that
prove that the algorithm behaves well in practice.

2 Preliminaries

This section gives preliminaries for Jacobian group of an algebraic curve and
for a Groebner basis of an ideal in a polynomial ring.

2.1 Jacobian group of an algebraic curve

Take an algebraic curve C defined over a field K. Let K be its algebraic
closure. A divisor D is defined to be a formal sum D =

∑
miPi for integers

mi and rational points(strictly, places) Pi of C over K. When mi ≥ 0 for all
i, the divisor D =

∑
miPi is called positive. The integer deg(D) =

∑
mi is

called degree of a divisor D =
∑

miPi. All divisors on a curve C compose an
abelian group D under the formal addition, and all divisors of degree zero
become a subgroup D0 of D. Let DK and D0

K be invariant subgroups of D
and D0 under the action of Gal(K | K), respectively. Elements of DK are
called divisors defined over K.

For a rational function f on a curve C, let vP (f) = n(or,−n) be the order n
of zero(or, pole) of f at a point P on C. Then, (f) :=

∑
P vP (f)P becomes a

divisor of degree 0, called a principal divisor of f . The partial sums (f)0 :=

2

∑
P,vP (f)≥0 vP (f)P and (f)∞ :=

∑
P,vP (f)≤0−vP (f)P are called a zero divisor

and a pole divisor of f , respectively. Note both (f)0 and (f)∞ are positive
divisors, and (f) = (f)0 − (f)∞. All principal divisors {(f) | f ∈ K(C)}
compose a subgroup P of D0. The quotient group J(C) = D0/P is called
Jacobian group of C. The invariant subgroup JK(C) = D0

K/P K of J(C) under
the action of Gal(K | K) is called Jacobian group of C defined over K.

For a divisor D defined over K,

L(D) = {f ∈ K(C) | (f) + D ≥ 0} ∪ {0}
is a finite dimensional vector space over K. By Riemann’s theorem, dim L(D) ≥
deg(D) + 1− g, where g denotes the genus of C.

For details, see chapter 2 of [10].

2.2 Monomial order and Groebner bases

Let N 0 denote the set of non-negative integers. For a n-variable monomial
xα = xα1

1 · · · xαn
n , a n-tuple of integers α = (α1, · · · , αn) ∈ Nn

0 is called a multi-
degree of xα, denoted by MD(xα). A well-order < on Nn

0 is called monomial
order if α + γ < β + γ holds whenever α < β and γ ∈ Nn

0 . A monomial
order on Nn

0 determines a well-order on the set of all monomials through
multi-degrees, called a monomial order, too. Suppose a monomial order is
given. For a n-variable polynomial f , the largest term (monomial) appearing
in f with respect to the monomial order is called a leading term (monomial)
of f , denoted by LT(f)(LM(f)). By using monomial orders, we can describe
the division algorithm for n-variable polynomials, in which a polynomial f is
divided by a set of polynomials G.

Fix a monomial order. A subset G = {g1, · · · , gm} of an ideal I of n-variable
polynomial ring R = K[x1, · · · , xn] is called a Groebner basis of I when leading
monomials LM(g1), · · · , LM(gm) generate an ideal LM(I) of leading monomials
in I:

LM(I) = (LM(g1), · · · , LM(gm)).

Any ideal of n-variable polynomial ring K[x1, · · · , xn] has a Groebner basis. If
G = {g1, · · · , gm} is a Groebner basis of an ideal I, G generates I.

For an ideal I, the set of all of the multi-degrees of monomials outside LM(I)
is called ∆-set of I, denoted by ∆(I):

∆(I) = {α ∈ Nn
0 | xα 6∈ LM(I)}.

3

Let δ(I) denote the number of elements in ∆(I). Obviously, when δ(I) is finite,
δ(I) = dimK(R/I). So, when δ(I) is finite, it is equal to the number of points
which are zeros of I, including multiplicities.

For a polynomial set G = {g1, · · · , gm}, we set

δ(g1, · · · , gm) :=] (Nn
0 −

m⋃

i=1

(MD(LM(gi)) + Nn
0)).

(]S denotes the number of elements in the set S.) Then, for an ideal I satisfying
δ(I) < ∞ and for its subset G = {g1, · · · , gm}, we have

G is a Groebner basis of I ⇐⇒ δ(I) = δ(g1, · · · , gm). (1)

Use of a Groebner basis justifies the division algorithm for n-variable polyno-
mials. That is, a polynomial f is a member of an ideal I if and only if the
remainder of f divided by the Groebner basis of I is equal to zero. Although
there are several Groebner bases for a given ideal, the reduced Groebner basis
is uniquely determined up by a given ideal. A Groebner basis G of an ideal
I is called reduced when 1) the coefficient of LT(p) is 1 for all p ∈ G, 2) any
term appearing in p doesn’t belong to (LT(G − {p})) for all p ∈ G. In this
paper, a Groebner basis is always considered in the reduced form.

For details, see chapter 2 of [3].

3 Cab curve

This section, after Miura, defines Cab curves and shows some properties of
them[9,8].

Let C be an algebraic curve with a place P of degree one over a perfect field
K. Take the ring L(∞P) of functions on C which are holomorphic away from
P :

L(∞P) = {f ∈ K(C) | vQ(f) ≥ 0 (∀Q 6= P)}.

All of the pole numbers −vP (f) at P of f ∈ L(∞P) become a monoid MP :

MP = {−vP (f) | f ∈ L(∞P)}.

Take a minimum system A = {a1, a2, . . . , at} (a1 < a2 · · · < at) of generators

4

of MP as a monoid:

MP = N 0a1 + N 0a2 + · · ·+ N 0at = 〈A〉,

where N 0 denotes the set of non-negative integers. Note gcd(a1, . . . , at) = 1,
since MP is co-finite in N 0.

For A = {a1, . . . , at}, define a function ΨA on N t
0 as

ΨA(n1, . . . , nt) =
t∑

i=1

aini (n = (ni) ∈ N t
0).

Definition 1 (Cab order) For m = (m1, . . . ,mt), and n = (n1, . . . , nt) ∈
N t

0, define an order >A as

m >A n
def⇐⇒ΨA(m) > ΨA(n)

or ΨA(m) = ΨA(n), m1 = n1, . . . , mi−1 = ni−1,mi < ni for a i ∈ [1..t].

Then, the order >A becomes a monomial order, called “Cab order of type A”.

For each a ∈ 〈a1, . . . , at〉, take the smallest m with respect to Cab order of
type A satisfying ΨA(m) = a, and put those as B(A):

B(A) = {the smallest m ∈ N t
0 w.r.t Cab order of type A satisfying ΨA(m) = a | a ∈ 〈A〉}.

Take a set V (A) of ‘minimum’ elements not belonging to B(A):

V (A) = {l ∈ N t
0 \B(A) | l = m + n,m ∈ N t

0 \B(A), n ∈ N t
0 ⇒ n = (0, 0, . . . , 0)}.

V (A) is a finite set as seen later.

Theorem 2 Let C be an algebraic curve defined over a perfect field K with a
place P of degree one. Suppose MP has a minimum system A = {a1, . . . , at} (a1 <
· · · < at) of generators as a monoid. Then, the curve C has a nonsingular
affine model in t-dimensional affine space defined by the equations

Fm = Xm + αlX
l +

∑

n∈B(A),ΨA(n)<ΨA(m)

αnXn (m ∈ V (A)) (2)

with a unique l ∈ B(A) satisfying ΨA(m) = ΨA(l), and αl(6= 0), αn ∈ K. The
affine model has a unique point P∞ at infinity, which corresponds to the place
P .

5

Conversely, for A = {a1, . . . , at} such that gcd(a1, . . . , at) = 1, a1 < · · · < at,
if the affine curve defined by equations (2) is nonsingular, and equations (2)
compose a Groebner basis w.r.t. Cab order of type A, putting

xi = Xi mod {Fm | m ∈ V (A)} (i = 1, . . . , t),

we have

−vP∞(xi) = ai (i = 1, . . . , t)

MP∞ = 〈A〉.

In particular

ΨA(n1, . . . , nt) = −vP∞(xn1
1 · · · xnt

t).

The affine curve Fm = 0 (m ∈ V (A)) obtained from A = {a1, . . . , at} (gcd(a1, . . . , at) =
1, a1 < · · · < at), is called a “Cab curve of type A”.

It is not trivial to determine V (A) for a given A. For i = 0, 1, . . . , a1 − 1, put

bi = min{b ∈ 〈a2, a3, . . . , at〉 | b ≡ i (mod a1)} (3)

and put

T (A) = {the smallest m ∈ N t
0 with ΨA(m) = bi | i = 0, 1, . . . a1 − 1}.

The set V (A) is easily determined by the following proposition.

Proposition 3 We have

V (A) ⊂ T (A) + {(0, . . . , 0, 1̌i, 0, . . . , 0) | i = 2, . . . , t} \ T (A). (4)

Proposition 4 The genus g(A) of a Cab curve of type A = {a1, . . . , at} is
given by

g(A) =
a1−1∑

i=1

[
bi

a1

]
.

In particular, when A = {a, b},

g(a, b) = (a− 1)(b− 1)/2.

6

Example: C3,4 curve

Let A = {3, 4}. By Proposition 3, we have

B(A) = {(0, 0), (1, 0), (0, 1), (2, 0), . . .},
T (A) = {(0, 0), (0, 1), (0, 2)},
V (A) = {(0, 3)}.

Since ΨA((0, 3)) = 12 is equal to the value of ΨA for (4, 0) ∈ B(A), we see
that a C3,4 curve (i.e. Cab curve of type {3,4}) is a plane curve defined by a
polynomial of the form

Y 3 = a0X
4 + a1XY 2 + a2X

2Y + a3X
3 + a4Y

2 + a5XY

+ a6X
2 + a7Y + a8X + a9 (5)

by Theorem 2.

Similarly a Cab curve of type A = {a, b} (gcd(a, b) = 1) is a plane curve defined
by a polynomial of the form

F (X, Y) =
∑

0≤i≤b,0≤j≤a,ai+bj≤ab

αi,jX
iY j. (6)

Galbraith et al. [4] call a nonsingular plane curve with an equation of the form

Y n = aδX
δ + · · ·+ a0,

superelliptic curves, where n is coprime with the characteristic of the definition
field, and n and δ are prime to each other. Obviously, superelliptic curves are
special cases of the plane Cab curves.

Example: C3,5,7 curve

Let A = {3, 5, 7}. By Proposition 3, we have

B(A) = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (2, 0, 0), (0, 0, 1), . . .},
T (A) = {(0, 0, 0), (0, 1, 0), (0, 0, 1)},
V (A) = {(0, 2, 0), (0, 1, 1), (0, 0, 2)}.

7

ΨA((0, 2, 0)) = 10 is equal to the value of ΨA for (1, 0, 1) ∈ B(A), ΨA((0, 1, 1))
is equal to the value of ΨA for (4, 0, 0) ∈ B(A), and ΨA((0, 0, 2)) is equal to
the value of ΨA for (3, 1, 0) ∈ B(A). So, by Theorem 2, C3,5,7 curve is a space
curve defined by three equations of the form

Y 2 = a0XZ + a1X
3 + a2XY + a3Z + a4X

2 + a5Y + a6X + a7,

Y Z = b0X
4 + b1X

2Y + b2XZ + b3X
3 + b4XY + b5Z + b6X

2

+ b7Y + b8X + b9,

Z2 = c0X
3Y + c1X

2Z + c2X
4 + c3X

2Y + c4XZ + c5X
3 + c6XY

+ c7Z + c8X
2 + c9Y + c10X + c11. (7)

4 An addition algorithm in Jacobian with divisors

Let C be an algebraic curve of genus g with a rational point P∞ over a perfect
field K. As seen in section 2.1, Jacobian group JK(C) of C over K is the
quotient group D0

K/P K . When an element j in JK(C) has a representative D
in D0

K , we denote j = [D];

JK(C) = D0
K/P K

j = [D].

Definition 5 We call a divisor D of the form D = E−mP∞ with an effective
divisor E prime to P∞ and with some integer m between 0 and g, a semi-
normal divisor.

Lemma 6 Every element in JK(C) is represented by a semi-normal divisor.

Proof Let j = [D] be any element in JK(C). By Riemann’s theorem,

dim L(D + g P∞) ≥ g + 1− g = 1.

So, with some nonzero function f ,

D + g P∞ + (f) ≥ 0.

Letting E = D + g P∞ + (f), we have j = [E − g P∞]. 2

In general, there are several semi-normal divisors, which represent the same
element in Jacobian. However, we can determine a unique representative by
using the following algorithm.

8

Algorithm 1
Input: a divisor D = E − nP∞ of degree 0 with an effective divisor E prime
to P∞, Output: a semi-normal divisor G equivalent to −D.

1◦ Find f ∈ L(∞P∞) satisfying (f)0 ≥ E with the smallest pole order
−vP∞(f) at P∞.

2◦ G ← −D + (f)

Proposition 7 Algorithm 1 outputs a constant divisor for equivalent divisors.

Proof Let D1 = E1 − n1P∞ and D2 = E2 − n2P∞ be equivalent divisors of
degree 0 with effective divisors Ei (i = 1, 2) prime to P∞.

With some nonzero function λ, we have

E1 − n1P∞ = E2 − n2P∞ + (λ).

For D1, take the function f1 ∈ L(∞P∞) satisfying (f1)0 ≥ E1 as in Algorithm
1. Then we have

(f1λ
−1) = (f1)− (λ)

= (f1)0 − E1 + E2 + (n1 + vP∞(f1)− n2)∞.

Since (f1)0 − E1 + E2 ≥ E2, letting f2 = f1λ
−1, we have

f2 ∈ L(∞P∞), (f2)0 ≥ E2.

Because λ is independent from the choice of f1 and f2, the f1 with the smallest
pole number at P∞ corresponds to the f2 with the smallest pole number at
P∞. Then,

−E2 + n2P∞ + (f2) =−E2 + n2P∞ + (f1)− E1 + E2 + (n1 − n2)P∞
=−E1 + n1P∞ + (f1)

shows that outputs of Algorithm 1 for D1 and D2 are the same. 2

Definition 8 We call divisors obtained as outputs of Algorithm 1 normal
divisors.

As Algorithm 1 outputs a divisor equivalent to -1 times the input divisor, we
can normalize any semi-normal divisor by applying Algorithm 1 twice. So,
Lemma 6 and Proposition 7 show that

9

Theorem 9 Any element in Jacobian is represented by a unique normal di-
visor.

Now, addition in Jacobian can be done by normalizing the added divisors;

Algorithm 2
Input: (semi-)normal divisors D1 = E1−n1P∞ and D2 = E2−n2P∞, Output:
a normal divisor D3 equivalent to D1 + D2.

1◦ Applying Algorithm 1 for D1 +D2 = (E1 +E2)−(n1 +n2)P∞, get a normal
divisor D′.

2◦ Applying Algorithm 1 for D′, get a normal divisor D3.

To perform Algorithm 1 and 2 on computers, we need to encode divisors in
some way. The most straightforward way is to encode divisors as point sets
with multiplicities as in [12]. But to encode divisors involved in our algorithms
as point sets, we need to deal with g!-th degree extension field of the definition
field K, and it hurts the efficiency of the algorithms.

In Cab curves, Jacobian group is naturally isomorphic to the ideal class group
of the coordinate ring. The next section, due to this fact, realizes Algorithm
1 and 2 by ideal computations in the coordinate ring.

5 An addition algorithm in Jacobian with ideals

Let C be a Cab curve of type

A = {a1, . . . , at} (gcd(a1, . . . , at) = 1, a1 < · · · < at)

defined over a perfect field K with equations

Fm = Xm + αlX
l +

∑

n∈B(A),ΨA(n)<ΨA(m)

αnXn (m ∈ V (A)) (8)

and let P∞ be the unique point on C at infinity.

By the definition of a Cab curve, we have

L(∞P∞) = K[x1, x2, . . . , xt]

'K[X1, X2, . . . , Xt]/(Fm | m ∈ V (A)).

10

So, the coordinate ring RK = K[X1, X2, . . . , Xt]/(Fm | m ∈ V (A)) is a
Dedekind domain.

In general, for a Dedekind domain R, Jacobian group of Spec(R) is just the
ideal class group H(R) of R (Example 6.3.2 on p132 of [5]). In this case, the
isomorphism Φ is given by

Φ :
JK(C)

∼→ H(RK)

[
∑

P nP P − nP∞] 7→ [L(∞P∞ −∑
P nP P)].

Remember that Cab order is defined by the order function ΨA, and by Theorem
2,

ΨA(n1, . . . , nt) = −vP∞(xn1
1 · · · xnt

t).

So, we see that Cab order puts monomials in order by pole numbers at P∞ of
them. Hence, by applying the isomorphism Φ for Algorithm 1, we get

Algorithm 3
Input: an ideal I of the coordinate ring RK of a Cab curve of type A, Output:
an ideal J equivalent to the inverse ideal of I

1◦ f ← the smallest f(6= 0) ∈ I with respect to the Cab order of type A
2◦ J ← (f) : I

Using Algorithm 3 twice as in the case of Algorithm 2, we get the following
addition algorithm in Jacobian of Cab curve.

Algorithm 4
Input: ideals I1 and I2 of the coordinate ring RK of a Cab curve of type A,
Output: an ideal I3 equivalent to the ideal product I1 · I2.

1◦ I ← I1 · I2

2◦ f ← the smallest f(6= 0) ∈ I with respect to the Cab order of type A
3◦ J ← (f) : I
4◦ g ← the smallest g(6= 0) ∈ J with respect to the Cab order of type A
5◦ I3 ← (g) : J

Algorithm 4 can be implemented using Groebner basis with respect to Cab order.
For example, we show a sample code by Mathematica Ver. 3 in the appendix.

11

Computation of ideal quotients costs Algorithm 4 its efficiency. We remove
computation of them from the addition algorithm. In Algorithm 4, we have

(f) = I1 · I2 · J,

(g) = J · I3.

So,

I1 · I2 · (g) = I1 · I2 · J · I3 = (f) · I3,

and we see

I3 = g · I1 · I2/f.

Thus, we get the following addition algorithm without ideal quotients.

Algorithm 5
Input: ideals I1 and I2 of the coordinate ring RK of a Cab curve of type A,
Output: an ideal I3 equivalent to the ideal product I1 · I2.

1◦ I ← I1 · I2

2◦ f ← the smallest polynomial f(6= 0) ∈ I with respect to the Cab order of type A
3◦ g ← the smallest polynomial g(6= 0) with respect to the Cab order of type A s.t. g·

I ⊆ (f)
4◦ I3 ← g · I/f

Remember g was the smallest member of J = (f) : I. So, by the definition of
the ideal quotient, g is the smallest polynomial satisfying gI ⊆ (f).

6 Details of implementation of the addition algorithm

This section explains the details of implementation of Algorithm 5, showing
an example of performing the algorithm. For a C34 curve on the prime field
K = F 17 with equation

F = Y 3 + X4 + 1,

we compute the double of

I1 = {f1 = X2 + 14Y + 4X + 5, f2 = XY + 3Y + 4X + 9, f3 = Y 2 + 9Y + 16X + 2}

12

in its Jacobian group JK(C).

In C34 order, monomials are put in the ascending order as follows;

1, X, Y, X2, XY, Y 2, X3, X2Y, XY 2, · · · . (9)

In the below, for a polynomial f and an ideal G, let f
G

denote the remainder
of a polynomial f divided by an ideal G.

1◦ At the first step, we compute the Groebner basis of the ideal product
I = I1 ·I1 with respect to the C34 order. Remeber that δ(I) means the number
of points which are zeros of I, including multiplicities (section 2.2). So, δ(I) =
δ(I1) + δ(I1) = 6. Then, if the ideal I contains a subset of the form

{X3 + · · · , X2Y + · · · , XY 2 + · · ·},

it must be a Groebner basis of I (see Equation (1)).

We compute members in I = I1 · I1 as follows;

g1← f 2
1

{F}
= X4 + · · ·

g2← f1 · f2
{g1,F}

= X3Y + · · ·
g3← f 2

2

{g2,g1,F}
= X2Y 2 + · · ·

g4← f1 · f3
{g3,g2,g1,F}

= XY 2 + · · ·
g5← f2 · f3

{g4,g3,g2,g1,F}
= X2Y + · · ·

g6← f 2
3

{g5,g4,g3,g2,g1,F}
= X3 + · · ·

Then,

I ← {g6, g5, g4}

is a Groebner basis of the ideal I by the above remark.

2◦ f ← g6 = X3 + 10Y 2 + 5XY + 7Y + 11X + 4

3◦ We find the smallest polynomial g(6= 0) such that g · I ⊂ (f, F).

Computing the remainder of the product of g5 and monomials divided by
{f, F} in the ascending order, we get

13

g5
{f,F} = X2Y + · · ·

Xg5
{f,F}

= XY 2 + · · ·
Y g5

{f,F}
= X2Y 2 + · · ·

Moreover, computing X2g5
{f,F}

, we get the result 4X2Y 2 + · · ·, which leading

monomial X2Y 2 is equal to the one of Y g5
{f,F}

. So,

X2g5 ≡ 4Y g5 + 12XY 2 + · · · (mod {f, F}).

Noting XY 2 is a leading monomial of Xg5
{f,F}

, and repeating the similar
computation, we get

X2g5 ≡ 4Y g5 + 12Xg5 + 2g5 (mod {f, F}).

So, we have

g ← X2 + 13Y + 5X + 15.

4◦

(g/f) · J = (g/f) · {g6, g5, g4}
= {g, (gg5)/f, (gg4)/f}

Getting the quotient {a5, b5} and {a4, b4} by dividing gg5 and gg4 by {f, F},
respectively, we have

I3←{g, (gg5)/f, (gg4)/f}
≡ {g, a5, a4} (mod {F})
= {X2 + 13Y + 5X + 15, XY + 13Y + 5X + 11,

Y 2 + 5Y + 12X + 6}

The right-hand side is the Groebner basis of I3, the result of the double of I1.

Remark

In the above, a polynomial g is computed such that gg5 is divisible by f . Then
we get such an g with LM(g) = X2. In this case, gg4 is automatically divisible
by f . The reason is as follows. Note that δ(J) = δ((f) : I) = −v∞(X3)−δ(I) =

14

3. So the smallest monomial in LM(J) (w.r.t. C34 order) is not greater than
X2 since X2 is the fourth smallest monomial (See Eq.(9)). Then, if gg4 is not
divisible by f , LM(g) becomes larger than X2, and this is impossible since g
must be the smallest member in J .

Now we get Algorithm 6 giving the details of Algorithm 5. For simplicity, Al-
gorithm 6 treats only plane Cab curve. In Algorithm 6, “{{c1, c2, · · · , ca}, r} ←
Division(g, G)” denotes that we get the quotient {c1, c2, · · · , ca} and the re-
mainder r by dividing the polynomial g by the polynomial set G(see section 3
of chapter 2 in [3] for details). “{{a1, · · · , ai}, r} ← Coefficients(f, r1, · · · , ri)”
denotes that we get coefficients {a1, · · · , ai} and the remainder r to express
f as a linear combination of r1, · · · , ri. Monoi denotes the i-th monomial in
Cab order (Mono1 = 1, Mono2 = X, · · ·).
Algorithm 6
algorithm JacobianSum(inputs I1, I2, output I3)

I3 ← Compose(I1, I2)
f ← the smallest element of I3

I3 ← Reduce(f, I3)
RETURN I3

subroutine Compose(inputs I1 = {f1, f2, · · · , fa}, I2 = {g1, g2, · · · , ga},
output I3)

I3 ← {F}
FOR i = 1 TO a, j = 1 TO a DO

g ← fi · gj
I3

I3 ← {g} ∪ I3

IF δ(I3) > δ(I1) + δ(I2) THEN I3 ← Buchberger(δ(I1) + δ(I2), I3)
I3 ← the set of the smallest a elements of I3

RETURN I3

subroutine Reduce(inputs f, I = {f1, f2, · · · , fa}, output J)

G ← {f, f · Y {F}
, · · · , f · Y a−1{F}, F}

LABEL(retry)
J ← {}
h ← ∑a

i=1(random number) · fi

g ← Divide(G, h)
FOR i = 1 TO a

{{c1, c2, · · · , ca}, r} ← Division(g · fi, G)
IF r 6= 0 THEN GOTO retry
k ← c1 + c2 · Y + · · ·+ ca · Y a−1

J ← J ∪ {k}
RETURN J

subroutine Divide(inputs G, h, output s)

15

r1 ← Mono1 · hG

s1 ← Mono1

i ← 1
WHILE ri 6= 0 DO

i ← i + 1

ri ← Monoi · hG

{{A1, · · · , Ai−1}, ri} ← Coefficients(ri, {r1, · · · , ri−1})
si ← Monoi −∑i−1

j=1 Ajsj

RETURN si

subroutine Buchberger(inputs m, I = {f1, · · · , fs},
output G = {g1, · · · , gt})

B ← {(i, j) | 1 ≤ i < j ≤ s}
G ← F
t ← s
WHILE B 6= φ AND δ(G) > m DO

Select (i, j) ∈ B
IF LCM(LT(fi), LT(fj)) 6= LT(fi)LT(fj) THEN

S ← S(fi, fj)
G

IF S 6= 0 THEN
t ← t + 1; ft ← S
G ← G ∪ {ft}
B ← B ∪ {(i, t) | 1 ≤ i ≤ t− 1}

B ← B − {(i, j)}
RETURN reduced G

The subroutine Compose corresponds to the first step of Algorithm 5. It com-
putes the Groebner basis of the ideal product I3 = I1 · I2 for ideals I1 and I2

of the coordinate ring K[X, Y]/(F (X,Y)). In the subroutine, we compute the
order of ∆-set δ(I) of an ideal I (for a definition of ∆-set, see section 2.2).
Only in the case that δ(I1)+δ(I2) 6= δ(I3), we need the subroutine Buchberger
to obtain Groebner basis of I3.

In general, the complexity of Buchberger algorithm may be quite huge. How-
ever, in our situation, the monomial order Cab order has the order function
Ψa,b, and forms of ideals involved are quit simple. So, Buchberger algorithm
works quite efficiently. Let g be the genus of Cab curve defined over a finite field
of q elements. First, I3 is composed of polynomials whose leading monomials
are the about 3g-th monomials among all the monomials. To obtain Groebner
basis of I3, we need to find polynomials in I3, whose leading monomials are
the about 2g-th monomials. In WHILE loop of Buchberger algorithm, using
notations in subroutine Buchberger, if we can make an ideal schedule for the

choice of polynomials fi, fj for the computation S(fi, fj), S = S(fi, fj)
G

is

16

not trivial and its leading monomial is strictly smaller than those of members
in G. This means that WHILE loop should finish in O(g) repeats. So, the
complexity of Buchberger algorithm in our situation with the ideal schedule
is O(q2g3). However, our experimental results show, when the size of the def-
inition field is large enough and the genus is small enough, the complexity of
Buchberger algorithm is not far from O(q2g3) with a hand-made schedule.

The subroutine Divide corresponds to the third step of Algorithm 5. For a
random linear combination h of fi, it compute the smallest polynomial s with
respect to Cab order, such that hs ∈ 〈G〉 just as in the above example. The
subroutine Divide is essentially same as the Gaussian elimination among g
variables. So, the complexity of Divide is O(q2g3).

The subroutine Reduce corresponds to the fourth step of Algorithm 5. The
reason why we choose a random linear combination of fi for h is just a heuristic.
As seen in the above example, it seems that the fact

g · (a random linear combination of fi) ∈ (f)

is sufficient for gI ⊂ (f) when the size of the definition field is large enough
and the genus is small enough. Our experimental results support the heuristic.

Note that the Groebner basis of the principal ideal (f) in the coordinate ring
K[X, Y]/(F) is given by

{f, f · Y {F}
, · · · , f · Y a−1{F}, F},

since the leading term Y a of F (X,Y) is prime to X.

Finally, we show timing results of our implementation of Algorithm 6 by C lan-
guage. Table 1, Table 2 and Table 3 show running times on 266MHz Pentium
II, for C35 curve, C37 curve and C2,13 curve, respectively. In each case, Cab curve
has the real size parameter in cryptographical applications, that is, Cab curves
have 160 bits Jacobian groups. In tables, ‘simple’ denotes Cab curves with
defining equations of the form Y a +αXb +β, and ‘random’ denotes randomly
chosen Cab curves. ‘Sum’, ‘Double’ and ‘Scalar’ denotes addition of two ran-
dom elements, doubling a random element and multiplication of a random
element by a 160 bits random integer, respectively. These results prove that
the algorithm behaves well in practice.

17

Table 1
Timing result for C35 curve (ms on 266MHZ,PentiumII)

simple random

Sum 3.39 3.65

Double 3.76 4.21

Scalar 862 958

Table 2
Timing result for C37 curve (ms on 266MHZ,PentiumII)

simple random

Sum 1.15 1.24

Double 1.15 1.28

Scalar 273 300

Table 3
Timing result for C2,13 curve (ms on 266MHZ,PentiumII)

simple random

Sum 0.70 0.73

Double 0.65 0.68

Scalar 158 167

Acknowledgements

I wish to thank S. Miura and R. Matsumoto for their helpful and suggesting
discussions with me. I also wish to thank anonymous referees for their a lot of
efforts to help me arrive at the final version of the paper.

References

[1] D.G.Cantor, “Computing in the Jacobian of a hyperelliptic curve”,
Mathematics of Computation, 48(177), pp.95-101,1987

[2] J.Chao,K.Matsuo,H.Kawashiro,S.Tsujii “Construction of Hyperelliptic Curves
with CM and Its Application”, Asiacrypt 2000, Advances in Cryptology, LNCS
1976, Springer, 2000.

[3] D.Cox, J.Little, D.O’Shea, “Ideals, Varieties, and Algorithms”, Springer-
Verlag, 1992.

[4] S.D.Galbraith, S.M.Paulus, and N.P.Smart “Arithmetic on Superelliptic
Curves”, J. Cryptology (1999) 12, 193-196.

18

[5] R.Hartshorne, “Algebraic Geometry”, Springer-Verlag, 1977.

[6] N.Koblitz, “Hyperelliptic cryptosystems”, J.Cryptography,1(1989), pp.139-
150

[7] N.Koblitz, “A Very Easy Way to Generate Curves over Prime Fields for
Hyperelliptic Cryptosystems”, Rump Talk, Crypto ’97

[8] R. Matsumoto, “The Cab Curve — a generalization of the Weierstrass form
to arbitrary plane curves”, http://www.rmatsumoto.org/cab.html

[9] S. Miura, “Linear Codes on Affine Algebraic Curves”, Trans. of IEICE, vol.
J81-A, No. 10, 1398-1421, Oct. 1998.

[10] J.H.Silverman, “The Arithmetic of Elliptic Curves”, Springer-Verlag

[11] A.-M.Spallek, “Kurven vom Geshlecht 2 und ihre Anwendung in Publick-Key-
Kryptosystemen”, Doctor thesis, Universität GH Essen, 1994

[12] E.J.Volcheck, “Computing in the Jacobian of a plane algebraic curve”, ANTS-
I, Lecture Notes in Computer Science, vol 877(1994), Springer-Verlag, pp.
221-233

A Sample code

Here is a sample code of Algorithm 4 with Mathematica Ver. 3.

(* Addition Algorithm in Jacobian of C_{a,b} curve *)

(* parameter *)

Var = {X,Y,Z};

p = 83;

OrderMatrix = {{3,5,7},{-1,0,0},{0,-1,0}}; (* C_{357} *)

OrderMatrix1 = {{1,0,0,0},{0,3,5,7},{0,-1,0,0},{0,0,-1,0}}; (* C_{357} *)

n = 650496;

DefIdeal = {

64 + 4 X + 30 X^2 + 30 X^3 + 76 Y + 75 X Y + Y^2 + 52 Z + 4 X Z,

10 + 27 X + 16 X^2 + 6 X^3 + 44 X^4 + 69 Y + 16 X Y + 27 X^2 Y

+ 31 Z + X Z + Y Z,

22 + 32 X + 77 X^2 + 30 X^3 + 11 X^4 + 17 Y + 25 X Y + 3 X^2 Y

+ 72 X^3 Y + 45 Z + 32 X Z + 76 X^2 Z + Z^2 };

G = {X-2,Y-33, Z+21}; (* a point on the curve *)

19

(* polynomial library *)

LT[f_] :=

MonomialList[f, Var, Modulus->p, MonomialOrder->OrderMatrix][[1]]

LC[f_] := LT[f] /. ((#->1)& /@ Var)

LM[f_] := LT[f] / LC[f]

GBasis[J_List] :=

GroebnerBasis[J,Var,Modulus->p,MonomialOrder->OrderMatrix]

GDivision[f_, J_List] :=

PolynomialReduce[f, J, Var,Modulus->p,MonomialOrder->OrderMatrix]

GRemainder[f_, J_List] := GDivision[f,J][[2]];

IdealIntersection[I_List, J_List] :=

Module[{t,G},

G = GroebnerBasis[Union[t*I,(1-t)*J],Prepend[Var,t],Modulus->p,

MonomialOrder->OrderMatrix1];

G = Select[G, (# == (# /.{t->0}))&]

]

IdealQuotient[I_List, f_] :=

Module[{G},

G = IdealIntersection[I, {f}];

G = GDivision[#, {f}]& /@ G;

G = First /@ G;

Union @@ G

] /; PolynomialQ[f]

IdealQuotient[I_List, J_List] :=

Module[{R},

R = IdealQuotient[I, First[J]];

Do[

R = IdealIntersection[R, IdealQuotient[I, J[[i]]]],

{i, 2, Length[J]}

];

R

]

(* main *)

20

JPower[n_Integer, I1_List] :=

Module[{i=n,J1=I1,R={1}},

While[i > 0,

If[OddQ[i], R=JSum[R,J1];i=(i-1)/2, i=i/2];

If[i>0, J1=JSum[J1,J1]]

];

R

]

JSum[I1_List, I2_List] :=

Module[{I3,f},

I3 = JCompose[I1,I2];

f = First[I3];

I3 = JReduce[f, I3];

f = First[I3];

JReduce[f, I3]

]

IdealProduct[I1_List, I1_List] :=

Module[{f, I3=DefIdeal},

Do[

f = I1[[i]] I1[[j]] // PolynomialMod[#,p]&;

f = GRemainder[f, I3];

If[f =!= 0, I3 = Prepend[I3, f]],

{i, 1, Length[I1]}, {j, 1, i}

];

I3

]

IdealProduct[I1_List, I2_List] :=

Module[{f, I3=DefIdeal},

Do[

f = I1[[i]] I2[[j]] // PolynomialMod[#,p]&;

f = GRemainder[f, I3];

If[f =!= 0, I3 = Prepend[I3, f]],

{i, 1, Length[I1]}, {j, 1, Length[I2]}

];

I3

]

JCompose[I1_List, I2_List] :=

Module[{I3},

I3 = IdealProduct[I1, I2];

I3 = GBasis[I3]

]

21

JReduce[f_, I_List] := IdealQuotient[Prepend[DefIdeal,f], I] /; PolynomialQ[f]

In the code, we treat a C3,5,7 curve on a prime field for p = 83 with equations

0 = 64 + 4X + 30X2 + 30X3 + 76Y + 75XY + Y 2 + 52Z + 4XZ,

0 = 10 + 27X + 16X2 + 6X3 + 44X4 + 69Y + 16XY + 27X2Y + 31Z

+ XZ + Y Z,

0 = 22 + 32X + 77X2 + 30X3 + 11X4 + 17Y + 25XY + 3X2Y + 72X3Y

+ 45Z + 32XZ + 76X2Z + Z2.

The order of the Jacobian is n = 650496. For example, computing n times the
point G = {X − 2, Y − 33, Z + 21} on the curve, we get

JPower[n,G] = {1}

22

